如图甲所示,两平行金属板间距为2l,极板长度为4l,两极板间加上如图乙所示的交变电压(t=0时上极板带正电)。以极板间的中心线OO1为x轴建立坐标系,现在平行板左侧人口正中部有宽度为l的电子束以平行于x轴的初速度v0从t=0时不停地射入两板间。已知电子都能从右侧两板间射出,射出方向都与x轴平行,且有电子射出的区域宽度为2l.电子质量为m,电荷量为e,忽略电子之间的相互作用力。
(1)求交变电压的周期T和电压U0的大小;
(2)在电场区域外加垂直纸面的圆形有界匀强磁场,可使所有电子经过圆形有界匀强磁场均能会聚于(6l,0)点,求所加磁场磁感应强度B的最大值和最小值。
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正
电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度v0的大小;
(3)粒子从M点运动到P点的总时间t.
质量为M的皮带轮工件放置在水平桌面上,一细绳绕过皮带轮的皮带槽,一端系一质量为m的重物,另一端固定在桌面上.如图所示,工件与桌面、绳之间以及绳与桌面边 缘之间的摩擦都忽略不计,桌面上绳子与桌面平行,则重物下落过程中,工件的加速度( )
A. | B. | C. | D. |
相距L=1.5 m的足够长金属导轨竖直放置,质量为m1=1 kg的金属棒ab和质量为m2=0.27 kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同. ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab棒在方向竖直向上、大小按图(乙)所示规律变化的外力F作用下,从静止开始沿导轨匀加速运动,同时cd棒也由静止释放.(g=10 m/s2)
(1)求磁感应强度B的大小和ab棒加速度的大小;
(2)已知在2 s内外力F做功40 J,求这一过程中两金属棒产生的总焦耳热;
(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(丙)中定性画出cd棒所受摩擦力Ffcd随时间变化的图象
一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a)所示,已知通过圆环的磁通量随时间t的变化关系如图(b)所示,图中的最大磁通量和变化周期T都是已知量,求:
(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q
(2)在t=0到t=2T的时间内,金属环所产生的电热Q.
一半径R=0.6m的金属圆筒有一圈细窄缝,形状如图所示。圆筒右侧与一个垂直纸面向里的有界匀强磁场相切于P,圆筒接地,圆心O处接正极,正极与圆筒之间的电场类似于正点电荷的电场,正极与圆筒之间电势差U可调。正极附近放有一粒子源(粒子源与正极O间距离忽略不计)能沿纸面向四周释放比荷q/m=1.5×l05C/kg的带正电粒子(粒子的初速度、重力均不计)。带电粒子经电场加速后从缝中射出进入磁场,已知磁场宽度d=0.4m,磁感应强度B=0.25T。
(1)若U=750V,求:①粒子达到细缝处的速度;②若有一粒子在磁场中运动的时间最短,求此粒子飞出磁场时与右边界的夹角大小。
(2)只要电势差U在合适的范围内变化,总有从向沿某一方向射出粒子经过磁场后又回到O处,求电势差U合适的范围。
如图所示,平面直角坐标系xoy中,在第二象限内有竖直放置的两平行金属板,其中右板开有小孔;在第一象限内存在内、外半径分别为、R的半圆形区域,其圆心与小孔的连线与x轴平行,该区域内有磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里:在y<0区域内有电场强度为E的匀强电场,方向与x轴负方向的夹角为60°。一个质量为m,带电量为-q的粒子(不计重力),从左金属板由静止开始经过加速后,进入第一象限的匀强磁场。求:
(1)若两金属板间的电压为U,粒子离开金属板进入磁场时的速度是多少?
(2)若粒子在磁场中运动时,刚好不能进入的中心区域,此情形下粒子在磁场中运动的速度大小。
(3)在(2)情形下,粒子运动到y<0的区域,它第一次在匀强电场中运动的时间。
在如图甲所示的平面坐标系内,有三个不同的静电场:第一象限内有电荷量为Q的点电荷在O点产生的电场E1,第二象限内有水平向右的匀强电场E2(大小未知),第四象限内有方向水平、大小按图乙变化的电场E3,E3以水平向右为正方向,变化周期。一质量为m,电荷量为+q的离子从(-x0,x0)点由静止释放,进入第一象限后恰能绕O点做圆周运动。以离子经过x轴时为计时起点,已知静电力常量为k,不计离子重力。求:
(1)离子刚进入第四象限时的速度;
(2)E2的大小;
(3)当t=时,离子的速度;
(4)当t=nT时,离子的坐标。
如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求:
(1)电阻R中的感应电流方向;
(2)重物匀速下降的速度v;
(3)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;
(4)若将重物下降h时的时刻记作t=0,速度记为v0,从此时刻
起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式)
如图所示,在直角坐标系xoy的第一象限中,存在竖直向下的匀强电场,电场强度大小为4E0,虚线是电场的理想边界线,虚线右端与x轴的交点为A,A点坐标为(L、0),虚线与x轴所围成的空间内没有电场;在第二象限存在水平向右的匀强电场。电场强度大小为E0。和两点的连线上有一个产生粒子的发生器装置,产生质量均为m,电荷量均为q静止的带正电的粒子,不计粒子的重力和粒子之间的相互作用,且整个装置处于真空中。已知从MN上静止释放的所有粒子,最后都能到达A点:
(1)若粒子从M点由静止开始运动,进入第一象限后始终在电场中运动并恰好到达A点,求到达A点的速度大小;
(2)若粒子从MN上的中点由静止开始运动,求该粒子从释放点运动到A点的时间;
(3)求第一象限的电场边界线(图中虚线)方程。
如图所示,两平行光滑导轨竖直固定。边界水平的匀强磁场宽度为h,方向垂直于导轨平面。两相同的导体棒a、b中点用长为h的绝缘轻杆相接,形成“工”字型框架,框架置于磁场上方,b棒距磁场上边界的高度为h,两棒与导轨接触良好。保持a、b棒水平,由静止释放框架,b棒刚进入磁场即做匀速运动,不计导轨电阻。则在框架下落过程中,a棒所受轻杆的作用力F及a棒的机械能E随下落的高度h变化的关系图象,可能正确的是
如图所示,一个物块A(可看成质点)放在足够长的平板小车B的右端,A、B一起以v0的水平初速度沿光滑水平面向左滑行.左边有一固定的竖直墙壁,小车B与墙壁相碰,碰撞时间极短,且碰撞前、后无动能损失.已知物块A与小车B的水平上表面间的动摩擦因数为μ,重力加速度为g.
(1)若A、B的质量均为m,求小车与墙壁碰撞后的运动过程中,物块A所受摩擦力的冲量大小和方向;
(2)若A、B的质量比为k,且k<1,求物块A在小车B上发生相对运动的过程中物块A对地的位移大小;
(3)若A、B的质量比为k,且k=2,求小车第一次与墙壁碰撞后的运动过程所经历的总时间.
如图所示(1),在粗糙的水平地面上,放有一块质量为m="1" kg,初速度为v0的木块,现在加水平恒力F,方向与初速度的方向在同一条直线上,通过实验发现不同的F,物块在地面运动的时间t不同,且当-2 N≤F<2 N时,1/t与F的关系如图(2)所示(设v0的方向为正、滑动摩擦力等于最大静摩擦力),则
(1)物块的初速度为多少?
(2)物块与地面间的动摩擦因素为多少?
(3)物块运动的时间t可能等于0.4 s吗?说明原因.