如图所示,半径为R的绝缘圆筒中有沿轴线方向的匀强磁场,磁场方向垂直于纸面向里,匀强磁场的磁感应强度为B,圆筒形场区的边界由弹性材料构成。一个质量为m.电荷量为q的正离子(不计重力)以某一速度从筒壁上的小孔M进入筒中,速度方向与半径成θ=30°夹角,并垂直于磁场方向。离子和筒壁的碰撞无能量和电荷量的损失.若选择合适的进入速度,离子可以从M孔射出。问:
(1)离子的速度多大时,离子可以在最短的时间内返回M孔最短的时间是多少?
(2)如果离子与筒壁发生两次碰撞后从M孔射出,离子的速率是多大?从进入圆筒到返回M孔经历的时间是多少?
如图所示,电源的电动势为50V,电源内阻为1.0,定值电阻R=14,M为直流电动机,电枢电阻R′=2.0,电动机正常运转时,电压表读数为35V,求在100s时间内电源做的功和电动机上转化为机械能的部分是多少?
如图所示电路,电源内阻,,,灯L标有“3V 1.5W”字样,滑动变阻器最大值为R,当滑片P滑到最右端A时,电流表读数为1A,此时
灯L恰好正常发光,试求:
(1)电源电动势E;
(2)当滑片P滑到最左端B时,电流表读数;
(3)当滑片P位于滑动变阻器的中点时,滑动变阻器上消耗的功率。
如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0="4" m/s,g取10m/s2。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
在研究摩擦力特点的实验中,将木块放在足够长的静止水平木板上。如图甲所示,用力沿水平方向拉木块,使拉力F从O开始逐渐增大.经实验绘制出摩擦力随拉力F的变化图像如图丙所示.已知木块质量为0.78 kg。
(1)求木块与长木板间的动摩擦因数。
(2)若木块在与水平方向成θ=37°角斜向右上方的恒定拉力F′作用下,以=2.0m/的加速度从静止开始做匀加速直线运动,如图乙所示,则F′为多大?(取sin 37°=0.6,COS 37°=0.8)
如图所示,为一传送货物的传送带abc,传送带的ab部分与水平面夹角=37°,bc部分与水平面夹角=53°,ab部分长为4.7m,bc部分长为7.5m。一个质量为m=1kg的物体A(可视为质点)与传送带的动摩擦因数=0.8。传送带沿顺时针方向以速率ν=1m/s匀速转动.若把物体A轻放到a处,它将被传送带送到c处,此过程中物体A不会脱离传送带。(sin 37°=0.6,sin 53°=0.8,g=10m/)求物体A从a处被传送到c处所用的时间。
图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计。导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直。质量m为6.0×10-3kg.电阻为1.0的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2。
如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m.有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:
(1)磁感应强度的大小B;
(2)电流稳定后,导体棒运动速度的大小;
(3)流经电流表电流的最大值。
如图甲所示,在水平面上固定有长为L=2m.宽为d=1m的金属“U”形导轨,在“U”形导轨右侧=0.5m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示。在t=0时刻,质量为m=0.1kg的导体棒以v0=lm/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g="10" m/s2)。
(1)通过计算分析4s内导体棒的运动情况;
(2)计算4s内回路中电流的大小,并判断电流方向;
(3)计算4s内回路产生的焦耳热。
如图所示,固定于水平桌面上足够长的两平行导轨PQ、MN,PQ、MN的电阻不计,间距为P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B=0.2T的匀强磁场中.电阻均为,质量分别为和的两金属棒L1、L2平行的搁在光滑导轨上,现固定棒L1,L2在水平恒力F=0.8N的作用下,由静止开始做加速运动,试求:
(1)当电压表的读数为U=0.2V时,棒L2的加速度多大?
(2)棒L2能达到的最大速度。
如图所示,金属杆放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长宽 回路总电阻回路处在竖直向上的磁场中,金属杆用水平绳通过定滑轮连接质量的木块,磁感应强度从开始随时间均匀增强,5s末木块将离开水平面,不计一切摩擦,g取,求回路中的电流强度。
如图所示(俯视),MN和PQ是两根固定在同一水平面上的足够长且电阻不计的平行金属导轨.两导轨间距为L=0.2m,其间有一个方向垂直水平面竖直向下的匀强磁场B1=5.0T。导轨上NQ之间接一电阻R1=0.40,阻值为R2=0.10的金属杆垂直导轨放置并与导轨始终保持良好接触。两导轨右端通过金属导线分别与电容器C的两极相连。电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.40m。
(1)用一个大小恒为10N,平行于MN水平向左的外力F拉金属杆,使杆从静止开始向左运动求:当金属杆最终匀速运动时杆的速度大小;
(2)当金属杆处于(1)问中的匀速运动状态时,电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒。已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2多大(结果允许含有三角函数式)。
如图(a)所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;如图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳CF拉住一个质量为M2的物体,求:
(1)细绳AC段的张力TAC与细绳EG的张力TEG之比;
(2)轻杆BC对C端的支持力;
(3)轻杆HG对G端的支持力.
有些人,像电梯修理员、牵引专家和赛艇运动员,常需要知道绳或金属线中的张力,可又不能到那些绳、线的自由端去测量.一家英国公司现在制造出一种夹在绳上的仪表,用一个杠杆使绳子的某点有一个微小偏移量,如图所示,仪表很容易测出垂直于绳的恢复力.推导一个能计算绳中张力的公式.如果偏移量为12 mm,恢复力为300 N,计算绳中张力.
如图所示,能承受最大拉力为10 N的细线OA与竖直方向成45°角,能承受最大拉力为5 N的细线OB水平,细线OC能承受足够的拉力,为使OA、OB均不被拉断,OC下端所悬挂物体的最大重力是多少?