竖直放置的一对平行金属板的左极板上,用长为L的轻质绝缘细线悬挂一个带电量为q质量为 m的小球,将平行金属板按如图所示的电路图连接。当滑动变阻器R在a位置时,绝缘线与左极板的夹角为θ1=30°,当将滑片缓慢地移动到b位置时,夹角为θ2=60°。两板间的距离大于L,重力加速度为g。
(1)求小球在上述两个平衡位置时,平行金属板上所带电荷量之比Q1︰Q2;
(2)若保持变阻器滑片位置在a处不变,对小球再施加一个拉力,使绝缘线与竖直方向的夹角从θ1=30°缓慢地增大到θ2=60°,求此过程中拉力做的功W。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=lm,电阻R1=3Ω,R2=1.5Ω,导轨上放一质量m=1kg的金属杆,长度与金属导轨等宽,与导轨接触良好,金属杆的电阻r=1.0Ω,导轨电阻忽略不计,整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场的方向垂直导轨平面向下。现用一拉力F沿水平方向拉杆,使金属杆由静止开始运动。图乙所示为通过金属杆中的电流平方(I2)随位移(x)变化的图线,当金属杆运动位移为5m时,求:
(1)金属杆的动能;
(2)安培力的功率;
(3)拉力F的大小。
如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行光滑的金属导轨MN与PQ,导轨的电阻忽略不计。在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻,导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。当金属棒以速度v=4.0m/s向左做匀速运动时,试求:
(1)电阻R中的电流强度大小和方向;
(2)使金属棒做匀速运动的外力;
(3)金属棒ab两端点间的电势差。
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°。匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直。质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:
(1)导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3)整个运动过程中,电阻R产生的焦耳热Q。
如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25 m的平行金属导轨,在导轨上端接入电源和滑动变阻器R。电源电动势E=12 V,内阻r=1 Ω,一质量m=20 g的金属棒ab与两导轨垂直并接触良好。整个装置处于磁感应强度B=0.80 T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计)。金属导轨是光滑的,取g=10 m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力的大小;
(2)通过金属棒的电流的大小;
(3)滑动变阻器R接入电路中的阻值。
如图所示,在x轴上方有磁感应强度为B的匀强磁场,一个质量为m,电荷量为的粒子,以速度v从O点射入磁场,已知,粒子重力不计,求:
(1)粒子的运动半径,并在图中定性地画出粒子在磁场中运动的轨迹;
(2)粒子在磁场中运动的时间;
(3)粒子经过x轴和y轴时的坐标。
如图所示,在y>0的空间中存在匀强电场,场强方向沿y轴正方向,场强大小为E。在y<0的空间中存在匀强磁场,磁场方向垂直xOy平面(纸面)向外,磁感应强度大小为B。一电量为q、质量为m、重力不计的带负电的粒子,在y轴上y=L处的P点由静止释放,然后从O点进入匀强磁场。已知粒子在y<0的空间运动时一直处于磁场区域内,求:
(1)粒子到达O点时速度大小v;
(2)粒子经过O点后第一次到达x轴上Q点(图中未画出)的横坐标x0;
(3)粒子从P点出发第一次到达x轴上Q点所用的时间t。
如图所示,U形导轨固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,金属棒与导轨围成正方形,边长为L,金属棒接入电路的电阻为R,导轨的电阻不计。从t=0时刻起,加一竖直向上的匀强磁场,其磁感应强度随时间的变化规律为B=kt(k>0),设金属棒与导轨间的最大静摩擦力等于滑动摩擦力。
(1)求金属棒滑动前,通过金属棒的电流的大小和方向;
(2)t为多大时,金属棒开始移动?
(3)从t=0时刻起到金属棒开始运动的过程中,金属棒中产生的焦耳热多大?
某发电站的输出功率为104 kW,输出电压为4 kV,通过理想变压器升压后向远处供电。已知输电导线的电阻为25.6 Ω,输电线路损失的功率为输出功率的4%,求:
(1)输电线上的电流;
(2)输电线路上的电压损失;
(3)升压变压器的原副线圈匝数比。
如图甲所示为电视机中的显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图像,不计逸出的电子的初速度和重力。已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示。在每个周期内磁感应强度都是从-B0均匀变化到B0。磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s。由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用。求:
(1)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值。
(2)若所有的电子都能从磁场的bc边射出时,荧光屏上亮线的最大长度。
如图所示,离子源从小孔发射出带电量为e的正离子(初速可忽略),在加速电压U的作用下,沿MO方向进入匀强磁场中,磁场限制在以O为圆心,半径为r的区域内,磁感应强度为B,方向垂直纸面向外,离子从N点射出,已知(不计重力),则正离子质量为多少?正离子通过磁场所需的时间为多少?
如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B=1T,匀强电场方向水平向右,场强N/C。一带正电的微粒质量m=2×10-6kg,电荷量q=2×10-6C,在此空间恰好做匀速直线运动,问:
(1)带电微粒运动速度的大小和方向怎样?
(2)若微粒运动到P点时刻,突然将磁场撤去,那么经多少时间微粒到达Q点?(设PQ连线与电场方向平行)
如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。射出以后,它第三次到达x轴时,与点O的距离为L。不计粒子重力,求:
(1)粒子射出时的速度v;
(2)粒子从射出以后第三次到达x轴所用的总时间;
(3)若粒子从射出以后到第n次向下穿过x轴所用的总时间为tn,写出tn的表达式。
一带电粒子无初速度的进入一加速电场A,然后垂直进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),如图所示。已知加速电场A板间电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L,粒子的质量为m,电荷量为q,不计粒子受到的重力及它们之间的相互作用力。求:
(1)粒子穿过A板时速度大小v0;
(2)粒子从偏转电场射出时的侧移量y;
(3)粒子从偏转电场射出时速度的偏转角q。