如图所示,一个绝热的气缸(气缸足够高)竖直放置,内有一个绝热且光滑的活塞,中间有一个固定的导热性良好的隔板,隔板将气缸分成两部分,分别密封着两部分理想气体A和B。活塞的质量m=8kg,横截面积,与隔板相距h=25cm,现通过电热丝缓慢加热气体,当A气体吸收热量Q=200J时,活塞上升了,此时气体的温度为℃,已知大气压强,重力加速度。
①加热过程中,若A气体的内能增加了,求B气体的内能增加量;
②现在停止对气体加热,同时在活塞上缓慢添加沙粒,当活塞恰好回到原来的位置时,A气体的温度为℃,求此添加砂粒的总质量M。
如图,一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s时间内小物块的图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g取。求
(1)木板与地面间的动摩擦因数μ1;
(2)木板的最小长度L;
一长木板置于光滑水平地面上,木板左端放置一小物块,在木板右方有一墙壁,如图(a)所示。时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s时间内小物块的图线如图(b)所示。木板的质量是小物块质量的1.5倍,重力加速度大小g取。求
(1)木板和木块的最终速度v (2)木板的最小长度L; (3)小物块与木板间的动摩擦因数μ2
如图所示,A、B是两块竖直放置的平行金属板,相距为2l,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场,A板上有一小孔(它的存在对两极板间的匀强电场分布的影响可忽略不计)。孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m、电荷量q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处,孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板l处有一固定挡板,长为l的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q,撤去外力释放带电小球,它将在电场力作用下由静止开始向左运动,穿过小孔(不与金属板A接触)后与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中,不损失机械能,小球从接触Q开始,经历时间,第一次把弹簧压缩至最短,然后又被弹簧弹回,由于薄板Q的绝缘性能有所欠缺,使得小球每次离开弹簧的瞬间,小球的电荷量都损失一部分,而变成该次刚与弹簧接触时小球电荷量的(k大于1)
(1)求小球第一次接触Q时的速度大小;
(2)假设小球被第n次弹回后向右运动的最远处没有到B板,试导出小球从第n次接触Q到本次向右运动至最远处的时间的表达式;
(3)假设小球经若干次弹回后向右运动的最远点恰好能到达B板,求小球从开始释放至刚好到达B点经历的时间
如图所示,平行光滑U形导轨倾斜放置,倾角,导轨间的距离L=1.0m,电阻R==3.0Ω,电容器电容C=,导轨电阻不计,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=2.0T,质量m=0.4kg,电阻r=1.0Ω的金属棒ab垂直置于导轨上,现用沿轨道平面且垂直于金属棒的大小F=5.0N的恒力,使金属棒ab从静止起沿导轨向上滑行,求:
(1)金属棒ab达到匀速运动时的速度大小();
(2)金属棒ab从静止开始匀速运动的过程中通过电阻的电荷量。
半径为R的半球形介质截面如图所示,D为圆心,同一频率的单色光a、b相互平行,从不同位置进入介质,光线a在O点恰好产生全反射。光线b的入射角为45°,求:
①介质的折射率;
②光线a、b的射出点O与O′之间的距离。
如图所示,圆柱形区域的半径为R,在区域内有垂直于纸面向里,磁感应强度大小为B的匀强磁场;对称放置的三个相同的电容器,极板间距为d,极板电压为U,与磁场相切的极板,在切点处均有一小孔.一带电粒子,质量为m,带电荷量为+q,自某电容器极板上的M点由静止释放,M点在小孔a的正上方,若经过一段时间后,带电粒子又恰好返回M点,不计带电粒子所受重力,求:
(1)带电粒子在磁场中运动的轨道半径;
(2)U与B所满足的关系式;
(3)带电粒子由静止释放到再次返回M点所经历的时间.
如图所示,一根轻质弹簧左端固定在水平桌面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0 kg,当弹簧处于原长时,小物块静止于O点,现对小物块施加一个外力,使它缓慢移动,压缩弹簧(压缩量为x=0.1 m)至A点,在这一过程中,所用外力与弹簧压缩量的关系如图所示。然后释放小物块,让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x。水平桌面的高为h=5.0 m,计算时,可取滑动摩擦力近似等于最大静摩擦力。(g取10 m/s2)
求:(1)压缩弹簧过程中,弹簧存贮的最大弹性势能;
(2)小物块到达桌边B点时速度的大小;
(3)小物块落地点与桌边B的水平距离。
过去已知材料的折射率都为正值(n>0),现针对某些电磁波设计的人工材料,其折射率都为负值(n<0),称为负折射率材料,电磁波从空气射入这类材料时,折射定律和电磁波传播规律仍然不变,但是折射线与入射线位于法线的同一侧(此时折射角取负值)。现空气中有一上下表面平行厚度为d=30cm,折射率n=-1.732的负折射率材料,一束电磁波从其上表面以入射角i=60°射入,从下表面射出,
①请画出电磁波穿过该材料的示意图;
②求电磁波穿过该材料所用的时间。
如图所示,空间中存在范围足够大匀强电场和匀强磁场,电场方向沿y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或撤除与撤除前的一样。一带正电荷的粒子(不计重力)从坐标原点以初速度沿x轴正方向射入,若同时存在电场和磁场,粒子恰好做直线运动,若只有磁场,粒子将做半径为R的匀速圆周运动;现在只加电场,粒子从O点开始运动,当粒子第一次通过x=R平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,求:
(1)粒子第一次通过x=P平面(图中虚线所示)时的速度。
(2)粒子从O点运动到第二次通过x=R平面(图中虚线所示)时所用的时间;
(3)粒子第二次通过x=R平面(图中虚线所示)时的位置坐标。
如图所示,一个质量为M=0.4kg,长为L=0.45m的圆管竖直放置,顶端塞有一个质量为m=0.1kg的弹性小球,球和管间的滑动摩擦力和最大静摩擦力大小均为4N,管从下端离地面距离为H=0.45m处自由落下,运动过程中,管始终保持竖直,每次落地后向上弹起的速度与落地时速度大小相等,不计空气阻力,取。求:
(1)管第一次落地弹起时管和球的加速度;
(2)假设管第一次落地弹起过程中,球没有从管中滑出,求球与管刚达到相对静止时,管的下端离地面的高度。
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
如图所示,在同一水平面的两导轨相互平行,相距2m并处于竖直向上的磁感应强度B为0.75T的匀强磁场中,一根质量为3.0kg的金属杆放在导轨上且与导轨垂直,当金属棒中通如图所示的电流为5A时,金属棒恰好做匀速直线运动,求:()
(1)导轨与金属棒间的动摩擦因数;
(2)保持气体条件不变,通入金属棒中电流变为9A瞬间,金属棒加速度的大小;
(3)保持气体条件不变,将两导轨的右端抬高,使其与水平方向夹角为45°,若要仍使金属棒保持静止且与导轨间无摩擦力,金属棒中的电流。
如图所示电路中,电源内阻r=2Ω,电动机内电阻R=1Ω,当S1闭合,S2断开时,电源电功率P=80W,电源的输出功率P0=72W,当S1和S2均闭合时,电动机正常工作,流过定值电阻R0的电流I0=1.5A。求:
(1)电源电动势E和定值电阻R0
(2)电动机正常工作时输出功率P出