如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.
(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.
(18分)图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上端放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去。如果质量为m的鱼饵到达管口C时,对上侧管壁的弹力恰好为mg。不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能。已知重力加速度为g、求:
(1)质量为m的鱼饵到达管口C时的速度大小VC;
(2)弹簧压缩到0.5R时的弹性势能Ep;
(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线00′在360°角的范围内缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在m到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
如图所示,在竖直平面的xoy坐标系内,一根长为l的不可伸长的细绳,一端固定在拉力传感器A上,另一端系一质量为m的小球.x轴上的P点固定一个表面光滑的小钉,P点与传感器A相距.现拉小球使细绳绷直并处在水平位置,然后由静止释放小球,当细绳碰到钉子后,小球可以绕钉子在竖直平面内做圆周运动.已知重力加速度大小为g,求:
(1)若小球经过最低点时拉力传感器的示数为7mg,求此时小球的速度大小;
(2)传感器A与坐标原点O之间的距离;
(3)若小球经过最低点时绳子恰好断开,请确定小球经过y轴的位置.
如图,“蜗牛状”轨道OAB竖直固定,其最低点与平板车左端平滑对接,平板车静止在光滑水平面上。其中,“蜗牛状”轨道由内壁光滑的两个半圆轨道OA、AB平滑连接而成,轨道OA的半径R=0.6m,其下端O刚好是轨道AB的圆心。将一质量为m=0.5kg的小球从O点沿切线方向以某一初速度进入轨道OA后,可沿OAB轨道运动滑上平板车。取g=10m/s2.
(1)若因受机械强度的限制,“蜗牛状”轨道AB段各处能承受最大挤压力为Fm=65N,则在保证轨道不受损情况下,该轨道最低点B处速度传感器显示速度范围如何?
(2)设平板车质量为M=2kg,平板车长度为L=2m,小球与平板车上表面动摩擦因数μ=0.5。现换用不同质量m的小球,以初速度v0=m/s从O点射入轨道,试讨论小球质量在不同取值范围内,系统因摩擦而相应产生的热量Q。
如图,有3块水平放置的长薄金属板a、b和c,a、b之间相距为L。紧贴b板下表面竖直放置半径为R的半圆形塑料细管,两管口正好位于小孔M、N处。板a与b、b与c之间接有电压可调的直流电源,板b与c间还存在方向垂直纸面向外的匀强磁场。当体积为V0、密度为ρ、电荷量为q的带负电油滴,等间隔地以速率v0从a板上的小孔竖直向下射入,调节板间电压Uba和Ubc,当Uba=U1、Ubc=U2时,油滴穿过b板M孔进入细管,恰能与细管无接触地从N孔射出。忽略小孔和细管对电场的影响,不计空气阻力,重力加速度为g。求:
(1)油滴进入M孔时的速度v1;
(2)b、c两板间的电场强度E和磁感应强度B的值;
(3)当油滴从细管的N孔射出瞬间,将Uba和B立即调整到Uba′和B′,使油滴恰好不碰到a板,且沿原路与细管无接触地返回穿过M孔,请给出Uba′和B′的结果。
一个内壁光滑的圆锥筒的轴线竖直,圆锥固定,有质量相同的两个小球A和B贴着筒的内壁在水平面内做匀速圆周运动,如图所示,A的半径较大,则 ( ).
A.A球的向心力大于B球的向心力 |
B.A球对筒壁的压力大于B球对筒壁的压力 |
C.A球的运动周期大于B球的运动周期 |
D.A球的角速度小于B球的角速度 |
一质量为m1=1 kg、带电量为q=0.5 C的小球M以速度v=4.5 m/s自光滑平台右端水平飞出,不计空气阻力,小球M飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,圆轨道ABC的形状为半径R<4 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点的竖直线OO′的右边空间存在竖直向下的匀强电场,电场强度大小为E=10 V/m.(sin53°=0.8,cos53°=0.6,重力加速度g取10 m/s2)求:
(1)小球M经过A点的速度大小vA;
(2)欲使小球M在圆轨道运动时不脱离圆轨道,求半径R的取值应满足什么条件?
分如图所示,光滑圆弧轨道最低点与光滑斜面在B点用一段光滑小圆弧平滑连接,可认为没有能量的损失,圆弧半径为R=0.5m,斜面的倾角为450,现有一个可视为质点、质量为m=0.1kg的小球从斜面上A点由静止释放,通过圆弧轨道最低点B时对轨道的压力为6N.以B点为坐标原点建立坐标系如图所示(g=l0m/s2)求:
(1)小球最初自由释放位置A离最低点B的高度h.
(2)小球运动到C点时对轨道的压力的大小;
(3)小球从离开C点至第一次落回到斜面上,落点的坐标是多少?
(8分)如图,一绝缘细圆环半径为r,环面处于水平面内,场强为E的匀强电场与圆环平面平行.环上穿有一电量为+q、质量为m的小球,可沿圆环做无摩擦的圆周运动.若小球经A点时速度的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用(设地球表面重力加速度为g).则:
(1)小球经过A点时的速度大小vA是多大?
(2)当小球运动到与A点对称的B点时,小球的速度是多大?圆环对小球的作用力大小是多少?
(3)若Eq=mg,小球的最大动能为多少?
如图所示,在水平天花板下用a、b两绝缘细线悬挂质量m=0.04 g,带电量q=+1.0×10-4 C的小球,a线竖直,b线刚好伸直,a线长l1=20 cm,b线长l2=40 cm,小球处于静止状态。整个装置处于范围足够大、方向水平且垂直纸面向里的匀强磁场中,磁感应强度B=2.0 T,不计空气阻力,重力加速度g取10 m/s2,试求∶
(1)图示位置a、b线中的张力Ta、Tb的大小;
(2)现将a线烧断,且小球摆到最低点时b线恰好断裂,求此后2 s内小球的位移x的大小。
如图1所示, A、B、C、D为固定于竖直平面内的闭合绝缘轨道,AB段、CD段均为半径R=1.6m的半圆,BC、AD段水平,AD=BC=8m。B、C之间的区域存在水平向右的有界匀强电场,
场强E=5×105V/m。质量为m=4×10-3kg、带电量q=+1×10-8C的小环套在轨道上。小环与轨道AD段
的动摩擦因数为,与轨道其余部分的摩擦忽略不计。现使小环在D点获得沿轨道向左的初速度
v0=4m/s,且在沿轨道AD段运动过程中始终受到方向竖直向上、大小随速度变化的力F(变化关系如
图2)作用,小环第一次到A点时对半圆轨道刚好无压力。不计小环大小,g取10m/s2。求:
(1)小环运动第一次到A时的速度多大?
(2)小环第一次回到D点时速度多大?
(3)小环经过若干次循环运动达到稳定运动状态,此时到达D点时速度应不小于多少?
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为的小球,O点到AB的距离为2L.现将细线拉至水平,小球从位置C由静止释放,到达O点正下方时,细线刚好被拉断.当小球运动到A点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为 (在弹性限度内),求:
(1)细线所能承受的最大拉力F;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图所示,水平轨道AB与竖直轨道CD用一光滑的半径R=0.5m的圆弧BC平滑连接,现有一物块从竖直轨道上的Q点由静止开始释放,已知QC间的长度R=0.5m,物块的质量m=0.2kg,物块与AB和CD轨道间的动摩擦因数均为μ=0.5,重力加速度g取10 m/s2,求;
(1)物块下滑到水平面后,距离B点的最远距离s为多少?
(2)若整个空间存在一水平向右的匀强电场,电场强度E=1.0×106V/m,并使物块带电,带电量为q=+2.0×10-6C,所有接触面均绝缘,现使带电物块从水平面上的P点由静止开始释放(P点未在图中标出),要想使物块刚好能通过Q点,PB间的长度L为多少?
(3)在符合第二问的基础上,物块到达圆弧上C点时,对轨道的压力大小?
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm。
(19分)如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求:
(1)被释放前弹簧的弹性势能?
(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P?