A、B两球质量分别为和,用一劲度系数为的弹簧相连,一长为的细线与相连,置于水平光滑桌面上,细线的另一端拴在数值轴上,如图所示。当与均以角速度绕做匀速圆周运动且稳定后,弹簧长度为。求:
(1)此时绳子的张力大小。
(2)将线突然烧断的瞬间,A球的加速度是多大?
(1)要使盒子在最高点时盒子与小球之间恰好无作用力,则该盒子做匀速圆周运动的周期为多少?
(2)若盒子以第(1)问中周期的做匀速圆周运动,则当盒子运动到图示球心与O点位于同一水平面位置时,小球对盒子的哪些面有作用力,作用力为多大?
如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示):
(1)若要小球离开锥面,则小球的角速度ω0至少为多大?
(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?
(3)细线的张力T与小球匀速转动的加速度ω有关,请在坐标纸上画出ω的取值范围在0到ω'之间时的T—ω2的图象(要求标明关键点的坐标值)。
“神舟六号”载人飞船在发射初期,宇航员的血液处于超重状态,严重时会产生黑视,甚至危及生命。
(1)假设载人飞船起飞时视为匀加速直线运动,加速度大小为60m/s2,方向竖直向上,两名宇航员在飞船内是躺在水平躺椅上的,则他们对躺椅的压力约为其重力的多少倍?(g=10m/s2)
(2)为了宇航员适应上述情况,必须进行专门的训练。训练的装置是半径为20m的水平坐舱,在电力的驱动下坐舱在水平面内做匀速圆周运动,若让坐舱在运动中的加速度大小为80m/s2,则坐舱每分钟应转动多少圈?(π约取3)
在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,从而使得部分垃圾进入大气层,开始做靠近地球的向心运动,产生这一结果的原因是 ( )
A.由于太空垃圾受到地球引力减小而导致的向心运动 |
B.由于太空垃圾受到地球引力增大而导致的向心运动 |
C.由于太空垃圾受到空气阻力而导致的向心运动 |
D.地球引力提供了太空垃圾做圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关 |
中央电视台《今日说法》栏目最近报道了一起发生在湖南
长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张
先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在
自家门口的场面,第八次有辆卡车冲撞进李先生家,造成
三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通
部门协力调查,画出的现场示意图如图所示.交警根据图
示作出以下判断,你认为正确的是 ( )
A.由图可知汽车在拐弯时发生侧翻是因为车作离心运动 |
B.由图可知汽车在拐弯时发生侧翻是因为车作向心运动 |
C.公路在设计上可能内(东)高外(西)低 |
D.公路在设计上可能外(西)高内(东)低 |
如下图所示,在半径R=20cm、质量M=168kg的均匀铜球中,挖去一球形空穴,空穴的半径为要,并且跟铜球相切,在铜球外有一质量m=1kg、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d=2m,试求它们之间的相互吸引力.
如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A.B两点分别是圆轨道的最低点和最高点,该区域存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动,(电荷量不变)经过C点时速度最大,O、C连线与竖直方向的夹角,CD为直径,重力加速度为g,求
(1)小球所受到的电场力的大小
(2)小球在A点速度多大时,小球经过D点时对圆轨道的压力最小
光滑水平面上有一质量为M的滑块,滑块的左侧是一光滑的圆弧,圆弧半径为R=1m.一质量为m的小球以速度v0向右运动冲上滑块.已知M=4m,g取10m/s2,若小球刚好没跃出圆弧的上端,求:
(1)小球的初速度v0是多少?
(2)滑块获得的最大速度是多少?
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
如图所示,在竖直面内有一光滑水平直轨道与半径为R=0.25m的光滑半圆形轨道在半圆的一个端点B相切,半圆轨道的另一端点为C。在直轨道上距B为x(m)的A点,有一可看做质点、质量为m=0.1kg的小物块处于静止状态。现用水平恒力将小物块推到B处后撤去恒力,小物块沿半圆轨道运动到C处后,恰好落回到水平面上的A点,取g=10m/s2。求
(1)水平恒力对小物块做功W与x的关系式;
(2)水平恒力做功的最小值;
(3)水平恒力的最小值。
如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度()时,滑块距离木板左端的长度是多少?
如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为的匀强电场(上、下及左侧无界)。一个质量为、电量为的可视为质点的带正电小球,在时刻以大小为的水平初速度向右通过电场中的一点P,当时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为,D到竖直面MN的距离DQ为.设磁感应强度垂直纸面向里为正.
(1)试说明小球在0—时间内的运动情况,并在图中画出运动的轨迹;
(2)试推出满足条件时的表达式(用题中所给物理量、、、、来表示);
(3)若小球能始终在电场所在空间做周期性运动.则当小球运动的周期最大时,求出磁感应强度及运动的最大周期的表达式(用题中所给物理量、、、来表示)。
如图甲,PNQ为竖直放置的半径为0.1m的半圆形轨道,在轨道的最低点P和最高点Q各安装了一个压力传感器,可测定小球在轨道内侧,通过这两点时对轨道的压力FP和FQ.轨道的下端与一光滑水平轨道相切,水平轨道上有一质量为0.06kg的小球A,以不同的初速度与静止在轨道最低点P处稍右侧的另一质量为0.04kg的小球B发生碰撞,碰后形成一整体(记为小球C)以共同速度v冲入PNQ轨道.(A、B、C三小球均可视为质点,g取10m/s2)
(1)若FP和FQ的关系图线如图乙所示,求:当 FP="13N" 时所对应的入射小球A的初速度为多大?
(2)当FP=13N时,AB所组成的系统从A球开始向左运动到整体达到轨道最高点Q全过程中所损失的总机械能为多少?
(3)若轨道PNQ光滑,小球C均能通过Q点.试推导FP随FQ变化的关系式,并在图丙中画出其图线.