如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为的小球,O点到AB的距离为2L.现将细线拉至水平,小球从位置C由静止释放,到达O点正下方时,细线刚好被拉断.当小球运动到A点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为 (在弹性限度内),求: (1)细线所能承受的最大拉力F;(2)斜面的倾角;(3)弹簧所获得的最大弹性势能.
弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,B、C相距20 cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,求:(1)振动的周期和频率;(2)振子在5 s内通过的路程及5 s末的位移大小;(3)振子在B点的加速度大小跟它距O点4 cm处P点的加速度大小的比值.
(12分)质量为m=1.0 kg的小滑块(可视为质点)放在质量为M=3.0 kg的长木板的右端,木板上表面光滑,木板与地面之间的动摩擦因数为μ=0.2,木板长L=1.0 m.开始时两者都处于静止状态,现对木板施加水平向右的恒力F=12 N,如图19所示,经一段时间后撤去F.为使小滑块不掉下木板,试求:用水平恒力F作用的最长时间.(g取10 m/s2)
(14分)如图18(a)所示,质量m=1 kg的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图(b)所示,求:(sin37°=0.6,cos37°=0.8,g=10 m/s2)(1)物体与斜面间的动摩擦因数μ;(2)比例系数k.
(12分)为了测量某住宅大楼每层的平均高度(层高)及电梯运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验.质量为m=50 kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层全过程中,体重计示数随时间变化的情况,并作出了如图17所示的图象,已知t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层.g取10 m/s2,求:(1)电梯启动和制动的加速度大小.(2)电梯上升的总高度及该大楼的层高.
(10分)如图16所示,斜面体质量为M,倾角为θ,与水平面间的动摩擦因数为μ,用细绳竖直悬挂一质量为m的小球静止在光滑斜面上,当烧断绳的瞬间,至少以多大的水平向右的力由静止拉动斜面体,小球才能做自由落体运动到地面?