在许多建筑工地经常使用打夯机将桩料打入泥土中以加固地基。打夯前先将桩料扶起、使其缓慢直立进入泥土中,每次卷扬机都通过滑轮用轻质钢丝绳将夯锤提升到距离桩顶=5m处再释放,让夯锤自由下落,夯锤砸在桩料上并不弹起,而随桩料一起向下运动。设夯锤和桩料的质量均为m="500" kg,泥土对桩料的阻力为,其中常数,是桩料深入泥土的深度。卷扬机使用电动机来驱动,卷扬机和电动机总的工作效率为=95%,每次卷扬机需用20 s的时间提升夯锤。提升夯锤时忽略加速和减速的过程,不计夯锤提升时的动能,也不计滑轮的摩擦。夯锤和桩料的作用时间极短,g取10,求:
(1)在提升夯锤的过程中,电动机的输入功率;(结果保留2位有效数字)
(2)打完第一夯后,桩料进入泥土的深度。
如图所示,半径为R的3/4圆周轨道固定在竖直平面内,O为圆轨道的圆心,D为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC与圆心等高。质量为m的小球从离B点高度为h处的A点由静止开始下落,从B点进入圆轨道,小球能通过圆轨道的最高点,并且在最高点对轨道的额压力不超过3mg。现由物理知识推知,小球下落高度h与圆轨道半径R及小球经过D点时的速度vD之间的关系为。
(1)求高度h应满足的条件;
(2)通过计算说明小球从D点飞出后能否落在水平面BC上,并求落点与B点水平距离的范围。
(12分)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,杆上P处固定一定滑轮(大小不计),滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套一质量m=3kg的滑块A。半径R=0.3m的光滑半圆形轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m=3kg的小球B。用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。杆和半圆形轨道在同一竖直面内,滑块和小球均可看作质点,且不计滑轮大小的影响。现给滑块A施加一个水平向右、大小为60N的恒力F,求:
(1)把小球B从地面拉到半圆形轨道顶点C的过程中力F做的功。
(2)小球B运动到C处时所受的向心力的大小。
(3)小球B被拉到离地多高时滑块A与小球B的速度大小相等?
分 如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的BC斜面,经C点进入光滑平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内。已知小球质量为1kg,A、B两点高度差2m,BC斜面高4m,倾角,悬挂弧筐的轻绳长为6m,小球看成质点,轻质筐的重量忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g=10m/s2 ,试求:
(1)B点与抛出点A的水平距离x;
(2)小球运动至C点的速度大小;
(3)小球进入轻质筐后瞬间,小球所受拉力F的大小.
如图所示,一质量m=1kg的小物块(可视为质点)从A点以大小v0=4m/s的初速度沿切线进入光滑圆轨道AB,经圆弧轨道后滑上与B点等高、静止在粗糙水平面的长木板上,圆弧轨道B端切线水平。已知长木板的质量M=1kg,A、B两点的竖直高度为h=1.0m,AO与BO之间夹角θ=37O,小物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,sin37O=0.6,cos37O=0.8。求:
(1)小物块运动至B点时的速度v1大小;
(2)小物块滑动至B点瞬时,对圆弧轨道B点的压力;
(3)长木板至少为多长,才能保证小物块不滑出长木板?
(4)小物块从滑上长木板起到停止运动所经历的时间
如图所示,轻质弹簧的劲度系数为20 N/cm,用其拉着一个重200 N的物体在水平面上运动.当弹簧的伸长量为4 cm时,物体恰在水平面上做匀速直线运动.
(1)求物体与水平面间的动摩擦因数;
(2)当弹簧的伸长量为6 cm时,物体受到的水平拉力有多大?这时物体受到的摩擦力有多大?
(3)如果在物体运动的过程中突然撤去弹簧,而物体在水平面上能继续滑行,这时物体受到的摩擦力有多大?
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,即F=-kx,其中k是由系统本身特性决定的线性回复力常数,那么质点的运动就是简谐运动。
(1)图1所示为一理想单摆,摆球的质量为m,摆长为L。重力加速度为g。请通过计算说明该单摆做简谐运动的线性回复力常数k=?
(2)单摆做简谐运动的过程中,由于偏角很小,因此可以认为摆球沿水平直线运动。
如图2所示,质量为m的摆球在回复力F=-kx作用下沿水平的x轴做简谐运动,若振幅为A,在平衡位置O点的速度为vm,试证明:。
(3)如图3所示,两个相同的理想单摆均悬挂在P点。将B球向左拉开很小的一段距离由静止释放,B球沿水平的x轴运动,在平衡位置O点与静止的C球发生对心碰撞,碰撞后B、C粘在一起向右运动。已知摆球的质量为m,摆长为L。释放B球时的位置到O点的距离为d。重力加速度为g。求B、C碰撞后它们沿x轴正方向运动的最大距离。
某兴趣小组对遥控车的性能进行研究。他们让小车在平直轨道上由静止开始运动,并将运动的全过程记录下来并得到v-t图象,如图所示,除2s-10s内的图线为曲线外,其余均为直线,已知小车运动的过程中,2s—14s内小车的功率保持不变,在第14s末关闭动力让小车自由滑行,已知小车的质量为1kg,可认为在整个过程中小车所受到的阻力大小不变。求:
(1)小车匀速行驶阶段的功率;
(2)小车在第2-10s内位移的大小。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m。导轨电阻忽略不计,其间接有固定电阻R=0.40Ω.导轨上停放一质量为m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。利用一外力F沿水平方向拉金属杆ab,使之由静止开始做匀加速直线运动,电压传感器可将R两端的电压U即时采集并输入电脑,并获得U随时间t的关系如图乙所示。求:
(1)金属杆加速度的大小;
(2)第2s末外力的瞬时功率。
汽车发动机的额定功率为40KW,质量为2000kg,当汽车在水平路面上行驶时受到阻力为车重的0.1倍(),求:
(1)汽车在路面上能达到的最大速度?
(2)若汽车以额定功率启动,当汽车速度为10m/s时的加速度?
(3)若汽车从静止开始保持1m/s2的加速度作匀加速直线运动,达到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶。求汽车从静止到获得最大行驶速度所用的总时间?
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
(8分).如图,一绝缘细圆环半径为r,环面处于水平面内,场强为E的匀强电场与圆环平面平行.环上穿有一电量为+q、质量为m的小球,可沿圆环做无摩擦的圆周运动.若小球经A点时速度的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用(设地球表面重力加速度为g).则:
(1)小球经过A点时的速度大小vA是多大?
(2)当小球运动到与A点对称的B点时,小球的速度是多大?圆环对小球的作用力大小是多少?
(3)若Eq=mg,小球的最大动能为多少?
(19分)如图所示,带正电的绝缘小滑块A,被长R=0.4m的绝缘细绳竖直悬挂,悬点O距水平地面的高度为3R;小滑块B不带电.位于O点正下方的地面上。长L=2R的绝缘水平传送带上表面距地面的高度h=2R,其左端与O点在同一竖直线上,右端的右侧空间有方向竖直向下的匀强电场。在O点与传送带之间有位置可调的固定钉子(图中未画出),当把A拉到水平位置由静止释放后,因钉子阻挡,细绳总会断裂,使得A能滑上传送带继续运动,若传送带逆时针匀速转动,A刚好能运动到传送带的右端。已知绝缘细绳能承受的最大拉力是A重力的5倍,A所受电场力大小与重力相等,重力加速度g=10m/s2,A.B均可视为质点,皮带传动轮半径很小,A不会因绳断裂而损失能量、也不会因摩擦而损失电荷量。试求:
(1)钉子距O点的距离的范围。
(2)若传送带以速度v0=5m/s顺时针匀速转动,在A刚滑到传送带上时,B从静止开始向右做匀加速直线运动,当A刚落地时,B恰与A相碰。试求B做匀加速运动的加速度大小(结果可用根式表示)