如图所示,在直角坐标系平面的第II象限内有半径为的圆分别与x轴、y轴相切于C(,0)、D(0,)两点,圆内存在垂直于平面向外的匀强磁场,磁感应强度B.与轴平行且指向负方向的匀强电场左边界与轴重合,右边界交轴于G点,一带正电的粒子A(重力不计)电荷量为、质量为,以某一速率垂直于轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与轴正向夹角45°的方向射出电场.求:
(1)OG之间距离;
(2)该匀强电场电场强度E;
(3)若另有一个与A的质量和电荷量相同、速率也相同的正粒子,从C点沿与轴负方向成30°角的方向射入磁场,则粒子再次回到轴上某点时,该点坐标值为多少?
如图(a)所示,左侧为某课外活动小组设计的某种速度选择装置(图(b)为它的立体图),由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,两盘面间存在竖直向上的匀强电场,盘上各开一狭缝,两狭缝夹角可调;右侧为长为d的水平桌面,水平桌面的右端有一质量为m绝缘小球B,用长也为d的不可伸长的细线悬挂,B对水平桌面压力刚好为零。今有电荷量为q,质量也为m的另一带电小球A沿水平方向射入N1狭缝,匀速通过两盘间后通过N2的狭缝,并沿水平桌面运动到右端与小球B发生碰撞,设A与B碰撞时速度发生交换。已知小球A与水平桌面间动摩擦因数为μ,
求:⑴.小球A带何种电及两盘面间的电场强度E的大小;
⑵.如果只要求小球A能与小球B相撞,那么当小球A从N2中穿出时它的速度应满足什么条件;
⑶.若两狭缝夹角调为θ,盘匀速转动,转动方向如图(b),要使小球A与小球B碰撞后,B恰好做完整的圆周运动,求薄盘转动的角速度ω。
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m。一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动。小物块与传送带间的动摩擦因数为,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2。
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大:
动车组是城际间实现小编组、大密度的高效运输工具,以其编组灵活、方便、快捷、安全、可靠、舒适等特点而备受世界各国铁路运输和城市轨道交通运输的青睐.动车组就是几节自带动力的车厢加几节不带动力的车厢编成一组,就是动车组.假设有一动车组由8节车厢连接而成,每节车厢的总质量均为7.5×104 kg.其中第一节、第二节带动力,他们的额定功率均为3.6×107W和2.4×107W,车在行驶过程中阻力恒为重力的0.1倍(g =10m/s2)
(1)求该动车组只开动第一节的动力的情况下能达到的最大速度;
(2)若列车从A地沿直线开往B地,先以恒定的功率6×107W(同时开动第一、第二节的动力)从静止开始启动,达到最大速度后匀速行驶,最后除去动力,列车在阻力作用下匀减速至B地恰好速度为0.已知AB间距为5.0×104m,求列车从A地到B地的总时间.
如图所示,竖直放置的半圆形光滑绝缘轨道半径为R,圆心为O,下端与绝缘水平轨道在B点平滑连接.一质量为m、带电量为+q的物块(可视为质点),置于水平轨道上的A点.已知A、B两点间的距离为L,物块与水平轨道间的动摩擦因数为μ,重力加速度为g.
(1)若物块能到达的最高点是半圆形轨道上与圆心O等高的C点,则物块在A点水平向左运动的初速度应为多大?
(2)若整个装置处于方向竖直向上的匀强电场中,物块在A点水平向左运动的初速度vA=,沿轨道恰好能运动到最高点D,向右飞出.则匀强电场的场强为多大?
(3)若整个装置处于水平向左的匀强电场中,场强的大小E=.现将物块从A点由静止释放,运动过程中始终不脱离轨道,求物块第2n(n=1、2、3…)次经过B点时的速度大小.
(18分)如图所示,半径R=1m的四分之一光滑圆轨道最低点D的切线沿水平方向,水平地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为L=2m,质量均为m2=1kg,木板上表面与轨道末端相切.质量m1=lkg的小物块(可视作质点)自圆轨道末端C点的正上方H=0.8m高处的A点由静止释放,恰好从C点切入圆轨道。物块与木板间的动摩擦因数为,木板与水平地面间的动摩擦因数=0.2,重力加速度为g=l0m/s,最大静摩擦力与滑动摩擦力相等。
(1)求物块到达圆轨道最低点D时所受轨道的支持力多大。
(2)若物块滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求应满足的条件。
(3)若地面光滑,物块滑上木板后,木板A、 B最终共同运动,求应满足的条件。
240毫米口径的车载多管火箭炮上安装有一种测定风速的装置,其原理如图10所示,一个劲度系数k=120 N/m,自然长度L0=1 m的弹簧一端固定在墙上的M点,另一端N与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属杆上,弹簧是由不导电的材料制成的.迎风板的面积S=0.5 m2,工作时总是正对着风吹来的方向.电路的一端与迎风板相连,另一端在M点与金属杆相连.迎风板可在金属杆上滑动,且与金属杆接触良好.定值电阻R=1.0 Ω,电源电动势E=12 V,内阻r=0.5 Ω,闭合开关,没有风吹时,弹簧处于原长,电压表的示数U1=9.0 V,某时刻由于风吹迎风板,电压表的示数变为U2=6.0 V.求(电压表可看做理想电压表)
(1)金属杆单位长度的电阻;
(2)此时作用在迎风板上的风力.
(8分)如图,一绝缘细圆环半径为r,环面处于水平面内,场强为E的匀强电场与圆环平面平行.环上穿有一电量为+q、质量为m的小球,可沿圆环做无摩擦的圆周运动.若小球经A点时速度的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用(设地球表面重力加速度为g).则:
(1)小球经过A点时的速度大小vA是多大?
(2)当小球运动到与A点对称的B点时,小球的速度是多大?圆环对小球的作用力大小是多少?
(3)若Eq=mg,小球的最大动能为多少?
如图1所示, A、B、C、D为固定于竖直平面内的闭合绝缘轨道,AB段、CD段均为半径R=1.6m的半圆,BC、AD段水平,AD=BC=8m。B、C之间的区域存在水平向右的有界匀强电场,
场强E=5×105V/m。质量为m=4×10-3kg、带电量q=+1×10-8C的小环套在轨道上。小环与轨道AD段
的动摩擦因数为,与轨道其余部分的摩擦忽略不计。现使小环在D点获得沿轨道向左的初速度
v0=4m/s,且在沿轨道AD段运动过程中始终受到方向竖直向上、大小随速度变化的力F(变化关系如
图2)作用,小环第一次到A点时对半圆轨道刚好无压力。不计小环大小,g取10m/s2。求:
(1)小环运动第一次到A时的速度多大?
(2)小环第一次回到D点时速度多大?
(3)小环经过若干次循环运动达到稳定运动状态,此时到达D点时速度应不小于多少?
如图,在光滑的倾角为θ的固定斜面上放一个劈形的物体A,其上表面水平,质量为M.物体B质量为m,B放在A的上面,先用手固定住A.
(1)若A的上表面粗糙,放手后,求AB相对静止一起沿斜面下滑,B对A的压力大小.
(2)若A的上表面光滑,求放手后的瞬间,B对A的压力大小.
如图所示,长L=9m的传送带与水平方向的倾角为37°,在电动机的带动下以v="4m/s" 的速率顺时针方向运行,在传送带的B端有一离传送带很近的挡板P可将传送带上的物块挡住,在传送带的A端无初速地放一质量m=1kg的物块,它与传送带间的动摩擦因数=0.5,物块与挡板的碰撞能量损失及碰撞时间不计。(sinθ=0.6,cosθ=0.8,g=10m/s2)问:
(1)物块与挡板P第一次碰撞后,上升到最高点时到挡板P的距离;
(2)若改为将一与皮带间动摩擦因素为μ=0.875、质量不变的新木块轻放在B端,求木块运动到A点过程中电动机多消耗的电能与电动机额定功率的最小值。
如图所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,斜面倾角分别如图所示。O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度.斜面体ABC固定在地面上,顶端B安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q (两边细绳分别与对应斜面平行),并保持P、Q两物块静止.若PC间距为L1=0.25m,斜面MN足够长,物块P质量m1= 3kg,与MN间的动摩擦因数,重力加速度g=10m/s2求:( sin37°=0.6,cos37°=0.8)
(1)小物块Q的质量m2;
(2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;
(3)物块P在MN斜面上滑行的总路程.
(18分)如图所示,劲度系数k=100N/m的一根轻质弹簧,右端固定在竖直墙壁上,左端连接一质量m=1.0kg的小物块,开始时弹簧处于原长,小物块静止于O点,现将小物块缓慢向左拉动至A点后释放,让小物块沿水平面向右运动起来,已知OA长度L=0.25m,小物块与水平面间的动摩擦因数μ=0.1,最大静摩擦力可看成等于滑动摩擦力的大小,g取10m/s2。
⑴试在坐标纸中作出小物块在由O移动到A的过程中,弹簧弹力F随伸长量x变化的F-x图象,类比于由v-t图象求位移的方法,求此过程中克服弹簧弹力做的功W;
⑵求小物块从A点向右运动过程中的最大速度v;
⑶求小物块从A点开始运动后,第一次到达最右端时,弹簧的形变量;
⑷求小物块从A点开始运动直至静止的总路程。
如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴方向的匀强电场,其电场强度大小和方向随时间变化的关系如图乙所示,现有质量为m,带电量为e的电子(不计重力)不断的从原点O以速度v0沿x轴正方向射入电场,问
(1)若要电子飞出电场时速度方向仍然沿x轴方向,则电场变化的周期必须满足何条件?
(2)若要电子从图中的A点沿x轴飞出,则电子应该在什么时刻进入电场?
(3)若在电场右侧有一个以点(3L,0)为圆心,半径为L的圆形磁场区域,且满足,则所有能进入磁场的电子将从何处飞出磁场?
(16分)如图所示,让一可视为质点的小球从光滑曲面轨道上的A点无初速滑下,运动到轨道最低点B后,进入半径为R的光滑竖直圆轨道,并恰好通过轨道最高点C,离开圆轨道后继续在光滑平直轨道上运动到D点后抛出,最终撞击到搁在轨道末端点和水平地面之间的木板上,已知轨道末端点距离水平地面的高度为H=0.8m,木板与水平面间的夹角为θ=37°,小球质量为m=0.1kg,A点距离轨道末端竖直高度为h=0.2m,不计空气阻力。(取g=10m/s2,sin37°=0.6,cos37°=0.8)
⑴求圆轨道半径R的大小;
⑵求小球从轨道末端点冲出后,第一次撞击木板时的位置距离木板上端的竖直高度有多大;
⑶若改变木板的长度,并使木板两端始终与平台和水平面相接,试通过计算推导小球第一次撞击木板时的动能随木板倾角θ变化的关系式,并在图中作出Ek-(tanθ)2图象。