如图所示,光滑的圆弧轨道与倾角为θ=37°的斜面相切于B点,圆弧轨道的半径为R=1m,质量为M=2kg的物块甲在斜面上A点由静止释放,物块甲与斜面的动摩擦因数为μ=0.25,AB间距离为s=4m,当甲运动到C点时,恰好与迎面过来的质量m=0.5kg的乙相碰,碰后两者粘在一起,向左运动,恰好能到达圆弧轨道的最高点D点,(已知sin37°=0.6,cos37°=0.8,g取10m/s2)求:
(1)物块甲与物块乙相碰前的速度v1;
(2)物块甲和乙碰撞后的一瞬间,它们对圆弧轨道最低点C的压力之和;
(3)两物块从D点抛出后,落到斜面上所用的时间.
如图所示,倾斜轨道AB的倾角为370,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。小球由静止从A点释放,已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin370=0.6,cos370=0.8,圆弧管道BC入口B与出口C的高度差为l.8R。求:(在运算中,根号中的数值无需算出)
(1)小球滑到斜面底端C时速度的大小。
(2)小球刚到C时对轨道的作用力。
(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径应该满足什么条件?
如图所示,水平放置的轻质弹簧左端与竖直墙壁相连,右侧与质量的小物块甲相接触但不粘连,B点为弹簧自由端,光滑水平面AB与倾角的倾斜面BC在B处平滑连接,OCD在同一条竖直线上,CD右端是半径的光滑圆弧,斜面BC与圆弧在C处也平滑连接,物块甲与斜面BC间的动摩擦因数。现用力将物块甲缓慢向左压缩弹簧,使弹簧获得一定能量后撤去外力,物块甲刚好能滑到C点,与此同时用长的细线悬挂于O点的小物块乙从图示位置静止释放,,物块乙到达C点时细线恰好断开且与物块甲发生正碰,碰撞后物块甲恰好对圆弧轨道无压力,物块乙恰好从图中P点离开圆弧轨道,取,,求:
(1)撤去外力时弹簧的弹性势能;
(2)小物块乙的质量M和细线所能承受的最大拉力;
(3)两物块碰撞过程中损失的能量;
(4)小物块乙落到水平面上时的速度大小(保留一位有效数字)。
(15分) 如图所示,水平轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m,质量m=0.1kg的小滑块(可视为质点)以一定的速度从水平轨道进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。若小滑块从C点水平飞出后恰好落在A点,重力加速度g=10m/s2,试分析求解:
(1)滑块通过C点时的速度大小;
(2)滑块刚进入半圆形轨道时,在B点对轨道的压力大小;
(12分)下表是一辆电动自行车的部分技术指标,其中额定车速是指电动自行车满载情况下在水平平直道路上以额定功率匀速行驶的速度。
额定车速 |
整车质量 |
载重 |
额定输出功率 |
电动机额定工作电压和电流 |
18km/h |
40kg |
80kg |
180W |
36V/6A |
请参考表中数据,完成下列问题 (g取10 m/s2):
(1)此电动机的电阻是多少?正常工作时,电动机的效率是多少?
(2)在水平平直道路上行驶过程中电动自行车受阻力是车重(包括载重)的k倍,试计算k的大小。
(3)仍在上述道路上行驶,若电动自行车满载时以额定功率行驶,当车速为2m/s时的加速度为多少?
在用高级沥青铺设的高速公路上,汽车的设计时速是108km/h。汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍。如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
地球半径为R0,地表面重力加速度为g0,登山运动员在某山的山顶做单摆实验,测得单摆的摆长为L,周期为T,由以上条件表示此山的高度。
绳系着装水的水桶,在竖直平面内做圆周运动,水的质量m = 0.5kg,绳长L = 40cm,求:
(1)桶的速率为3m/s时,桶在最高点时水能不能流出?
(2)水对桶底的压力为15N时,桶在最高点速率v2=?
如图所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,O为圆弧圆心,D为圆弧最低点.斜面体ABC固定在地面上,顶端B安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q (两边细绳分别与对应斜面平行),并保持P、Q两物块静止.若PC间距为L1=0.25m,斜面MN足够长,物块P质量m1= 3kg,与MN间的动摩擦因数,求:(sin37°=0.6,cos37°=0.8)
(1)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;
(2)物块P第一次过M点后0.3s到达K点,则 MK间距多大;
(3)物块P在MN斜面上滑行的总路程.
如图所示,一根长为L的绝缘轻绳的一端固定在O点,另一端连接着一个带正电的小球,小球可视为质点,其质量为m,电荷量为q。在O点正上方和正下方距O点L处,各固定一个绝缘弹性挡板A和B,两个挡板尺寸很小,均竖直放置。此装置处在一个竖直匀强电场中,电场强度的大小为,方向最初竖直向上。现将小球拉到O点右侧同一高度且距O点L处,给它一个竖直向上的初速度 。此后小球在A、B之间的右侧区域竖直面内做圆周运动,并不时与A、B挡板碰撞,在小球与A、B挡板碰撞时,通过两挡板上安装的传感器和控制电路,控制电场方向在碰后瞬间反向,不计碰撞中的能量损失,重力加速度为g,求:
(1)小球与A挡板第一次碰前瞬间,绳中拉力F1为多少?
(2)小球与B挡板第一次碰前瞬间,绳中的拉力F2为多少?
(3)若轻绳可以承受的最大拉力为50mg,则在绳断之前,小球与B挡板碰撞了多少次?
(11分)如图光滑水平导轨AB的左端有一压缩的弹簧,弹簧左端固定,右端前放一个质量为m=1kg的物块(可视为质点),物块与弹簧不粘连,B点与水平传送带的左端刚好平齐接触,传送带的长度BC的长为L=6m,沿逆时针方向以恒定速度v=2m/s匀速转动。CD为光滑的水平轨道,C点与传送带的右端刚好平齐接触,DE是竖直放置的半径为R=0.4m的光滑半圆轨道,DE与CD相切于D点。已知物块与传送带间的动摩擦因数μ=0.2,取g=10m/s2。
(1)若释放弹簧,物块离开弹簧,滑上传送带刚好能到达C点,求弹簧储存的弹性势能Ep;
(2)若释放弹簧,物块离开弹簧,滑上传送带能够通过C点,并经过圆弧轨道DE,从其最高点E飞出,最终落在CD上距D点的距离为x=1.2m处(CD长大于1.2m),求物块通过E点时受到的压力大小;
(3)满足(2)条件时,求物块通过传送带的过程中产生的热能。
如图所示,电阻不计的两光滑平行金属导轨相距L=1m,PM、QN部分水平放置在绝缘桌面上,半径a=0.9m的光滑金属半圆导轨处在竖直平面内,且分别在M、N处平滑相切, PQ左端与R=2Ω的电阻连接.一质量为m=1kg、电阻r=1Ω的金属棒放在导轨上的PQ处并与两导轨始终垂直.整个装置处于磁感应强度大小B=1T、方向竖直向上的匀强磁场中,g取10m/s2.求:
(1)若金属棒以v=3m/s速度在水平轨道上向右匀速运动,求该过程中棒受到的安培力大小;
(2)若金属棒恰好能通过轨道最高点CD处,求棒通过CD处时棒两端的电压;
(3)设LPM=LQN=3m,若金属棒从PQ处以3m/s匀速率沿着轨道运动,且棒沿半圆轨道部分运动时,回路中产生随时间按余弦规律变化的感应电流,求棒从PQ运动到CD的过程中,电路中产生的焦耳热.
如图甲所示是一打桩机的简易模型.质量m=1kg的物体在恒定拉力F作用下从与钉子接触处由静止开始运动,上升一段高度后撤去F,到最高点后自由下落,撞击钉子,将钉子打入一定深度.物体上升过程中,机械能E与上升高度h的关系图像如图乙所示.不计所有摩擦,g取10m/s2.求:
(1)物体上升到1m高度处的速度;
(2)物体上升1 m后再经多长时间才撞击钉子(结果可保留根号);
(3)物体上升到0.25m高度处拉力F的瞬时功率.
如图所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,斜面倾角分别如图所示。O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度.斜面体ABC固定在地面上,顶端B安装一定滑轮, 一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q (两边细绳分别与对应斜面平行),并保持P、Q两物块静止.若PC间距为L1=0.25m,斜面MN足够长,物块P质量m1= 3kg,与MN间的动摩擦因数,重力加速度g=10m/s2求:( sin37°=0.6,cos37°=0.8)
(1)小物块Q的质量m2;
(2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;
(3)物块P在MN斜面上滑行的总路程.
为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个质量为2kg的小物块以初速度v0=4.0m/s,从某一高处水平抛出,恰从A点无碰撞地沿倾斜轨道滑下。已知物块与倾斜轨道AB的动摩擦因数μ=0.5(g取10m/s2,sin37°=0.6,cos37°=0.8):
(1)求小物块的抛出点和A点的高度差;
(2)求小物块沿着轨道AB运动的过程中克服摩擦力所做的功;
(3)为了让小物块能沿着轨道运动,并从E点飞出,则竖直圆轨道的半径应该满足什么条件?