如图所示,粗糙水平面与半径的光滑圆弧轨道相切于点.静止于处的物体在大小为10、方向与水平面成37°角的推力作用下沿水平面运动,到达点时立刻撤去,物体沿光滑圆弧向上冲并越过点,然后返回经过处的速度.已知,,,.不计空气阻力.求:
(1)物体到达点时对轨道的压力;
(2)物体与水平面间的动摩擦因数.
如图所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径。一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°。不计空气阻力。已知重力加速度为g,sin37°=0.6,cos37°=0.8。
a.求电场强度E的大小;
b.若要使小球从P点出发能做完整的圆周运动,求小球初速度应满足的条件。
如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2。
(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)
如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A又与一跨过定滑轮的轻绳相连,绳另一端悬挂着物体B和C,A,B,C均处于静止状态,现剪断B和C之间的绳子,则A和B将做简谐运动,已知物体A质量为3m,B和C质量均为2m,弹簧的劲度系数为k,试求:
(1)剪断B和C间绳子之前,A,B,C均处于静止状态时,弹簧的开变量;
(2)物体A振动过程中的最大速度vm及此时弹簧的形变量;
(3)振动过程中,绳对物体B的最大拉力和最小拉力。
【改编】如图所示,遥控赛车比赛中的一个规定项目是“飞跃壕沟”,比赛要求是:赛车从起点出发,沿水平直轨道运动,在B点飞出后越过“壕沟”,落在平台EF段.已知赛车的额定功率P=12.0W,赛车的质量m=1.0kg,在水平直轨道上受到的阻力f=2.0N,若比赛中赛车以额定功率运动,经过A点时速度vA=1m/s,AB段长L=10.0m,B、E两点的高度差h=1.25m,BE的水平距离x=1.5m.赛车车长不计,空气阻力不计.g取10m/s2.
(1)要使赛车越过壕沟,求赛车在B点速度至少多大;
(2)求赛车在A点时加速度大小.
(3)求赛车从A点运动到平台EF的时间
如图所示,x轴与水平传送带重合,坐标原点O在传送带的左端,传送带长L=8 m,匀速运动的速度v0=5 m/s。一质量m=1 kg的小物块轻轻放在传送带上xP=2 m的P点,小物块随传送带运动到Q点后恰好能冲上光滑圆弧轨道的最高点N点。小物块与传送带间的动摩擦因数μ=0.5,重力加速度g=10 m/s2。求:
(1)N点的纵坐标;
(2)小物块在传送带上运动产生的热量;
(3)若将小物块轻放在传送带上的某些位置,小物块均能沿光滑圆弧轨道运动(小物块始终在圆弧轨道运动不脱轨)到达纵坐标yM=0.25 m的M点,求这些位置的横坐标范围。
如图所示,质量为m=0.2kg的小球固定在长为L=0.9m的轻杆的一端,杆可绕O点的水平转轴在竖直平面内转动。(g=10 m/s2)求:
(1)当小球在最高点的速度为多大时,球对杆的作用力为零?
(2)当小球在最高点的速度分别为6 m/s 和1.5 m/s 时,球对杆的作用力的大小与方向?
【改编】如图所示,位于竖直平面上半径为R=0.2m的1/4圆弧轨道AB光滑无摩擦,O点为圆心。质量为m=1kg的小球从A点由静止释放,到达B点时,小球对轨道的压力为30N,从B点飞出,最后落在地面C处。若BC所连直线与水平方向夹角为θ,且tanθ=1,取g ="10" m/s2,不计空气阻力,求:
(1)小球通过B点时的速度;
(2)B点与水平地面的高度差H;
(3)小球落地时的速度大小。
如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:
(1)物块做平抛运动的初速度大小v0;
(2)物块与转台间的动摩擦因数μ.
(9分) 如图所示,水平轨道AB与竖直半圆形光滑轨道在B点平滑连接,半圆形轨道半径R=2.5m,质量m=0.1kg的小滑块(可视为质点)以一定的速度从水平轨道进入半圆形轨道,沿轨道运动恰好能到最高点C,且从C点水平飞出后恰好落在A点,重力加速度g=10m/s2,试分析求解:
(1)滑块通过C点时的速度大小;
(2)AB间的距离x。
一轻质橡皮筋原长L=50cm,劲度系数k=100N/m,将其上端固定在天花板上O点,如图甲所示。
(1)在其下端A处用细线悬挂重为16N的物块,静止后如图乙所示,求橡皮筋的伸长量x1;
(2)在图乙中A处用一水平外力向右缓慢拉动,使橡皮筋与竖直方向成37°角时保持静止,如图丙所示,求橡皮筋的伸长量x2和物块高度的变化量h。(sin37°=0.6 , cos37°=0.8)
如图甲所示,BCD为竖直放置的半径R=0.20m的半圆形轨道,在半圆形轨道的最低位置B和最高位置D均安装了压力传感器,可测定小物块通过这两处时对轨道的压力FB和FD。半圆形轨道在B位置与水平直轨道AB平滑连接,在D位置与另一水平直轨道EF相对,其间留有可让小物块通过的缝隙。一质量m=0.20kg的小物块P(可视为质点),以不同的初速度从M点沿水平直轨道AB滑行一段距离,进入半圆形轨道BCD经过D位置后平滑进入水平直轨道EF。一质量为2m的小物块Q(可视为质点)被锁定在水平直轨道EF上,其右侧固定一个劲度系数为k=500N/m的轻弹簧。如果对小物块Q施加的水平力F≥30N,则它会瞬间解除锁定沿水平直轨道EF滑行,且在解除锁定的过程中无能量损失。已知弹簧的弹性势能公式,其中k为弹簧的劲度系数,x为弹簧的形变量。g取10m/s2。
(1)通过传感器测得的FB和FD的关系图线如图乙所示。若轨道各处均不光滑,且已知轨道与小物块P之间的动摩擦因数μ=0.10,MB之间的距离xMB=0.50m。当 FB=18N时,求:
①小物块P通过B位置时的速度vB的大小;
②小物块P从M点运动到轨道最高位置D的过程中损失的总机械能;
(2)若轨道各处均光滑,在某次实验中,测得P经过B位置时的速度大小为m/s。求在弹簧被压缩的过程中,弹簧的最大弹性势能。
洋流又叫海流,指大洋表层海水常年大规模的沿一定方向较为稳定的流动。因为海水中含有大量的正、负离子,这些离子随海流做定向运动,如果有足够强的磁场能使海流中的正、负离子发生偏转,便可用来发电。图为利用海流发电的磁流体发电机原理示意图,其中的发电管道是长为L、宽为d、高为h的矩形水平管道。发电管道的上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的导体板。两导体板与开关S和定值电阻R相连。整个管道置于方向竖直向上、磁感应强度大小为B的匀强磁场中。为了简化问题,可以认为:开关闭合前后,海水在发电管道内以恒定速率v朝正东方向流动,发电管道相当于电源,M、N两端相当于电源的正、负极,发电管道内海水的电阻为r(可视为电源内阻)。管道内海水所受的摩擦阻力保持不变,大小为f。不计地磁场的影响。
(1)判断M、N两端哪端是电源的正极,并求出此发电装置产生的电动势;
(2)要保证发电管道中的海水以恒定的速度流动,发电管道进、出口两端要保持一定的压力差。请推导当开关闭合后,发电管两端压力差F与发电管道中海水的流速v之间的关系;
(3)发电管道进、出口两端压力差F的功率可视为该发电机的输入功率,定值电阻R消耗的电功率与输入功率的比值可定义为该发电机的效率。求开关闭合后,该发电机的效率η;在发电管道形状确定、海水的电阻r、外电阻R和管道内海水所受的摩擦阻力f保持不变的情况下,要提高该发电机的效率,简述可采取的措施。
如图所示,在竖直平面内有半径为R="0.4" m的光滑1/4圆弧AB,圆弧B处的切线水平,O点在B点的正下方,B点高度为h="0.8" m。在B端接一长为L=4.0m的木板MN。一质量为m=2.0kg的滑块,与木板间的动摩擦因数为0.1,滑块以某一速度从N点滑到板上,恰好运动到A点。(g取10 m/s2)求:
(1)滑块从N点滑到板上时初速度的大小;
(2)从A点滑回到圆弧的B点时对圆弧的压力;
(3)若将木板右端截去长为ΔL的一段,滑块从A端静止释放后,将滑离木板落在水平面上P点处,要使落地点P距O点最远,ΔL应为多少?