如图所示,粗糙水平面与半径的光滑圆弧轨道相切于点.静止于处的物体在大小为10、方向与水平面成37°角的推力作用下沿水平面运动,到达点时立刻撤去,物体沿光滑圆弧向上冲并越过点,然后返回经过处的速度.已知,,,.不计空气阻力.求:(1)物体到达点时对轨道的压力;(2)物体与水平面间的动摩擦因数.
如图,一气缸水平固定在静止的小车上,一质量为m、面积为S的活塞将一定量的气体封闭在气缸内,平衡时活塞与气缸底相距L。现让小车以一较小的水平恒定加速度向右运动,稳定时发现活塞相对于气缸移动了距离d。已知大气压强为p0,不计气缸和活塞间的摩擦,且小车运动时,大气对活塞的压强仍可视为p0,整个过程中温度保持不变。求小车的加速度的大小。
如图,一上端开口、下端封闭的细长玻璃管竖直放置。玻璃管的下部封有长l1=25.0cm的空气柱,中间有一段长为l2=25.0cm的水银柱,上部空气柱的长度l3=40.0cm。已知大气压强为P0=75.0cmHg。现将一活塞(图中未画出)从玻璃管开口处缓缓往下推,使管下部空气柱长度变为l1’=20.0cm。假设活塞下推过程中没有漏气,求活塞下推的距离。
如图,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料。开始时活塞至容器底部的高度为H1,容器内气体温度与外界温度相等。在活塞上逐步加上多个砝码后,活塞下降到距容器底部H2处,气体温度升高了△T;然后取走容器外的保温材料,活塞位置继续下降,最后静止于距容器底部H3处:已知大气压强为p0。求:气体最后的压强与温度。
如图所示,一开口气缸内盛有密度为ρ的某种液体;一长为l的粗细均匀的小瓶底朝上漂浮在液体中,平衡时小瓶露出液面的部分和进入小瓶中液柱的长度均为l/4.现有活塞将气缸封闭(图中未画出),使活塞缓慢向下运动,各部分气体的温度均保持不变.当小瓶的底部恰好与液面相平时,进入小瓶中的液柱长度为l/2,求此时气缸内气体的压强.大气压强为p0,重力加速度为g.
用可放大600倍的显微镜观察布朗运动.估计放大后的小颗粒(碳)体积为1×10-10 m3,碳的密度是2.25×103 kg/m3,摩尔质量是1.2×10-2 kg/mol ,阿伏加德罗常数为6.0×1023 mol-1,试估算小颗粒中的分子数和碳分子的直径?(取1位有效数字)