如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN的半径为R=3.2m,水平部分NP长L=3.5m,物体B静止在足够长的平板小车C上,B与小车的接触面光滑,小车的左端紧贴平台的右端。从M点由静止释放的物体A滑至轨道最右端P点后再滑上小车,物体A滑上小车后若与物体B相碰必粘在一起,它们间无竖直作用力。A与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等。物体A、B和小车C的质量均为1kg,取g=10m/s2。求:
(1)物体A进入N点前瞬间对轨道的压力大小?
(2)物体A在NP上运动的时间?
(3)物体A最终离小车左端的距离为多少?
如图所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆轨道,B点为水平面与轨道的切点,在离B距离为x的A点,用水平恒力将质量为m的质点从静止开始推到B处后撤去恒力,质点沿半圆轨道运动到C处后又正好落回A点:
(1)求推力对小球所做的功。
(2)x取何值时,完成上述运动推力所做的功最少?最小功为多少。
(3)x取何值时,完成上述运动推力最小?最小推力为多少。
如图, 的三个顶点的坐标分别为O(0,0)、A(L,0)、C(0, L),在区域内有垂直于xOy平面向里的匀强磁场。在t=0时刻,同时从三角形的OA边各处以沿y轴正向的相同速度将质量均为m,电荷量均为q的带正电粒子射入磁场,已知在t=t0时刻从OC边射出磁场的粒子的速度方向垂直于y轴。不计粒子重力和空气阻力及粒子间相互作用。
(1)求磁场的磁感应强度B的大小;
(2)若从OA边两个不同位置射入磁场的粒子,先后从OC边上的同一点P(P点图中未标出)射出磁场,求这两个粒子在磁场中运动的时间t1与t2之间应满足的关系;
(3)从OC边上的同一点P射出磁场的这两个粒子经过P点的时间间隔与P点位置有关,若该时间间隔最大值为,求粒子进入磁场时的速度大小。
如图所示,一固定斜面体,其斜边与水平底边的夹角,BC为一段光滑圆弧轨道,DE为半圆形光滑轨道,两圆弧轨道均固定于竖直平面内,一滑板静止在光滑的地面上,右端紧靠C点,上表面所在平面与两圆弧分别相切于C、D两点。一物块被轻放在斜面上F点由静止释放,物块离开斜面后恰好在B点沿切线进入BC段圆弧轨道,再经C点滑上滑板,滑板运动到D点时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,DE半圆弧轨道和BC圆弧轨道的半径均为R,斜面体水平底边与滑板上表面的高度差,板长l=6.5R,板左端到D点的距离L在范围内取值,F点距A点的距离s=12.5R,物块与斜面、物块与滑板间的动摩擦因数均为,重力加速度取g。已知sin37°=0.6,cos37°=0.8。求:(结果用字母m、g、R、L表示)
(1)求物块滑到A点的速度大小;
(2)求物块滑到C点时所受圆弧轨道的支持力的大小;
(3)试讨论物块从滑上滑板到离开左端的过程中,克服摩擦力做的功Wf与L的关系;并判断物块能否滑到DE轨道的中点。
如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.
(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.
某兴趣小组对一辆自制小遥控车的性能进行研究。他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v t图象,如图所示(除2s 10s时间段内的图象为曲线外,其余时间段图象均为直线)。已知小车运动的过程中,2s 14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。小车的质量为1kg,可认为在整个过程中小车所受到的阻力大小不变。求:
(1)小车运动中所受到的阻力大小为多少?
(2)小车匀速行驶阶段的功率为多少?
(3)小车加速运动过程中牵引力做功为多少?
过山车是游乐场中常见的设施。下图是一种过山车运行轨道的简易模型,它由竖直平面内粗糙斜面轨道和光滑圆形轨道组成。过山车与斜面轨道间的动摩擦因数为,圆形轨道半径为R,A点是圆形轨道与斜面轨道的切点。过山车(可视为质点)从倾角为的斜面轨道某一点由静止开始释放并顺利通过圆形轨道。若整个过程中,人能承受过山车对他的作用力不超过其自身重力的8倍。求过山车释放点距A点的距离范围。
某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示。可视为质点的赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直半圆轨道,并通过半圆轨道的最高点C,才算完成比赛。B是半圆轨道的最低点,水平直线轨道和半圆轨道相切于B点。已知赛车质量m=0.5kg,通电后以额定功率P=2W工作,进入竖直圆轨道前受到的阻力恒为Ff=0.4N,随后在运动中受到的阻力均可不计,L=10.00m,R=0.32m,(g取10m/s2)。求:
(1)要使赛车完成比赛,赛车在半圆轨道的B点对轨道的压力至少多大;
(2)要使赛车完成比赛,电动机至少工作多长时间;
(3)若电动机工作时间为 t0=5s,当R为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少。
下图是用传送带传送行李的示意图。图中水平传送带AB间的长度为8m,它的右侧是一竖直的半径为0.8m的1/4圆形光滑轨道,轨道底端与传送带在B点相切。若传送带向右以6m/s的恒定速度匀速运动,当在传送带的左侧A点轻轻放上一个质量为4kg的行李箱时,箱子运动到传送带的最右侧如果没被捡起,能滑上圆形轨道,而后做往复运动直到被捡起为止。已知箱子与传送带间的动摩擦因数为0.1,重力加速度大小为g=10m/s2,求:
⑴箱子从A点到B点所用的时间及箱子滑到圆形轨道底端时对轨道的压力大小;
⑵若行李箱放上A点时给它一个5m/s的水平向右的初速度,到达B点时如果没被捡
起,则箱子离开圆形轨道最高点后还能上升多大高度?在给定的坐标系中定性画出箱子从A点到最高点过程中速率v随时间t变化的图象。
【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:
(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
如图所示,滑块的质量m1="0.1" kg,用长为L的细线悬挂质量为m2="0.1" kg的小球,小球可视为质点,滑块与水平地面间及滑块与传送带间的动摩擦因数均为μ=0.2,滑块到小球及小球到传送带的距离均为s="2" m,传送带以v=4m/s的恒定速度匀速逆时针转动,传送带足够长。开始时,滑块以速度v0="8" m/s沿水平方向向右运动,并与小球发生弹性正碰,碰后小球能在竖直平面内做完整的圆周运动。问:
(1)细线长度L应该满足什么条件?
(2)若碰撞后小球恰能在竖直平面内完成完整的圆周运动并再次与滑块弹性正碰,则滑块与小球第一次碰撞后瞬间,悬线对小球的拉力多大?
(3)滑块从滑上传送带到从传送带上滑下,一共产生多少热量?(重力加速度g=10m/s2)
如图甲所示,倾斜光滑直轨道AB和一直径d=0.4m的光滑圆轨道BCD平滑连接,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D两点分别为圆轨道的最低点和最高点),且∠BOC=θ=37°。一质量m=0.1kg的小滑块(可视为质点)从轨道AB上高H处的某点由静止滑下。已知sin37°=0.6,cos37°=0.8。
(1)若小滑块刚好能通过圆轨道最高点D点,求此时的高度H;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,请在如图乙中绘制出压力F与高度H的关系图象;
(3)通过计算判断是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。
如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2。
(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)
【改编】如图所示,遥控赛车比赛中的一个规定项目是“飞跃壕沟”,比赛要求是:赛车从起点出发,沿水平直轨道运动,在B点飞出后越过“壕沟”,落在平台EF段.已知赛车的额定功率P=12.0W,赛车的质量m=1.0kg,在水平直轨道上受到的阻力f=2.0N,若比赛中赛车以额定功率运动,经过A点时速度vA=1m/s,AB段长L=10.0m,B、E两点的高度差h=1.25m,BE的水平距离x=1.5m.赛车车长不计,空气阻力不计.g取10m/s2.
(1)要使赛车越过壕沟,求赛车在B点速度至少多大;
(2)求赛车在A点时加速度大小.
(3)求赛车从A点运动到平台EF的时间