某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 |
A |
B |
C |
D |
E E |
销售额x(千万元) |
3 |
5 |
6 |
7 |
9 9 |
利润额y(千万元) |
2 |
3 |
3 |
4 |
5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品,
(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率
(本小题满分14分)已知函数.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)若关于x的不等式恒成立,求整数a的最小值;
(Ⅲ)若正实数满足,证明.
(本小题满分13分)已知抛物线的焦点为,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线,切线相交于点M.证明;
(Ⅲ)椭圆E上是否存在一点,经过点作抛物线C的两条切线(为切点),使得直线过点F?若存在,求出抛物线C与切线所围成图形的面积;若不存在,试说明理由.
(本小题满分16分)已知函数满足,且当时,,当时,的最大值为.
(1)求实数a的值;
(2)设,函数,.若对任意,总存在,使,求实数b的取值范围.
(本小题满分16分)如图,在平面直角坐标系中,椭圆的左,右顶点分别为,若直线上有且仅有一个点,使得.
(1)求椭圆的标准方程;
(2)设圆的圆心在x轴上方,且圆经过椭圆两焦点.点,分别为椭圆和圆上的一动点.若时, 取得最大值为,求实数的值.
(本小题满分12分)已知椭圆的左、右焦点分别为、
,过的直线l与椭圆C相交于A,B两点,且△的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作与直线l平行的直线m,且直线m与抛物线交于P、Q两点,若A、P在x轴
上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.
(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体
1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的
人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
(本小题共13分)已知数列的前项和为,且.
(1)求的通项公式;
(2)设,若恒成立,求实数的取值范围;
(3)设,是数列的前项和,证明.
(本小题满分15分)已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,
将其坐标记录于下表中:
x |
3 |
4 |
||
0 |
(Ⅰ)求,的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?
若存在,求出直线的方程;若不存在,说明理由.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在
这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
已知点是圆上任意一点,过点作轴的垂线,垂足为,点满足 记点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)设,点在曲线上,且直线与直线的斜率之积为,求的面积的最大值.
(本题14分)已知椭圆的方程为,称圆心在坐标原点,半径为
的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为.
(1)求椭圆及其“伴随圆”的方程;
(2)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积
的最大值.
(本小题满分16分)已知函数,其中a为实数.
(1)是否存在?若存在,求出实数a的取值范围;若不存在,请说明理由.
(2)若集合中恰有5个元素,求实数a的取值范围.
设正项数列{an}(n≥5)对任意正整数k(k≥3)恒满足:,且.
(1)求数列{an}的通项公式;
(2)是否存在整数,使得对于任意正整数n恒成立?若存在,求出的值;若不存在,说明理由。(注:)