(本题14分)已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为.(1)求椭圆及其“伴随圆”的方程;(2)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.
已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R. (1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b); (2)判断(1)中命题的逆命题是否成立,并证明你的结论.
已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.
求证:
已知函数=. (Ⅰ)当时,求不等式 ≥3的解集; (Ⅱ) 若≤的解集包含,求的取值范围.
解不等式