(本小题满分14分)已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)若关于x的不等式恒成立,求整数a的最小值;(Ⅲ)若正实数满足,证明.
已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点(1)求椭圆C的方程;(2)求三角形MNT的面积的最大值
如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。(1)求证:平面;(2)设二面角的平面角为,若,求线段长的取值范围。
己知在锐角ΔABC中,角所对的边分别为,且(I )求角大小;(II)当时,求的取值范围.
(本小题满分10分)选修4-5:不等式选讲设().(Ⅰ)当时,求函数的定义域;(Ⅱ)若当,恒成立,求实数的取值范围.