高中数学

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.
(1)若,求方程在区间内的解集;
(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量(件)与电视广告每天的播放量(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量(件)关于电视广告每天的播放量(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
命题实系数一元二次方程的两根都是虚数;
命题存在复数同时满足.
试判断:命题和命题之间是否存在推出关系?请说明你的理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式可把平面直角坐标系上的一点变换到这一平面上的一点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程,并求出其两个焦点经变换公式变换后得到的点的坐标;
(2) 若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点. 求(1)中的椭圆在变换下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分18分,其中第1小题6分,第2小题6分,第3小题6分)
已知数列的首项为1,前项和为,且满足.数列满足.
(1) 求数列的通项公式;
(2) 当时,试比较的大小,并说明理由;
(3) 试判断:当时,向量是否可能恰为直线的方向向量?请说明你的理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量(件)与电视广告每天的播放量(次)的关系可用如图所示的程序框图来体现.

(1)试写出该产品每天的销售量(件)关于电视广告每天的播放量(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在中,. 以为圆心,线段的长为半径的半圆分别交所在直线于点,交线段于点,求弧的长.(精确到

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,且以下命题都为真命题:
命题 实系数一元二次方程的两根都是虚数;
命题 存在复数同时满足.
求实数的取值范围.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)
已知双曲线C:的一个焦点是,且
(1)求双曲线C的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。
(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点的直线与线段分别相交于点。若
(1)求证:的关系为
(2)设,定义在上的偶函数,当,且函数图象关于直线对称,求证:并求时的解析式;
(3)在(2)的条件下,不等式上恒成立,求实数的取值范围。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
设数列中,若,则称数列为“凸数列”。
(1)设数列为“凸数列”,若,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”中,求证:
(3)设,若数列为“凸数列”,求数列前2010项和

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分,第(1)小题6分,第(2)小题8分)
分别为的内角的对边,的夹角为
(1)求角的大小;
(2)已知的面积,求的值。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分,第(1)小题6分,第(2)小题8分)
设函数,若不等式的解集为
(1)求的值;
(2)若函数上的最小值为1,求实数的值。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若
(1)求证:的关系为
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数上偶函数,当,又函数图象关于直线对称,当方程上有两个不同的实数解时,求实数的取值范围。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题