高中数学

试求过点P(3,5)且与曲线y=x2相切的直线方程.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

航天飞机升空后一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t的单位为s.
(1)h(0),h(1),h(2)分别表示什么?
(2)求第2s内的平均速度;
(3)求第2s末的瞬时速度.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=2x2+3,分别计算函数f(x)在下列区间上的平均变化率:
(1)[2,4];
(2)[2,3];
(3)[2,2.1];
(4)[2,2.001].

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

A、B、C是我方三个炮兵阵地,A在B正东6 km,C在B正北偏西30°,相距4 km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4 s后,B、C才同时发现这一信号,此信号的传播速度为1 km/s,A若炮击P地,求炮击的方位角.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一摩托车手欲飞跃黄河,设计摩托车沿跑道飞出时前进方向与水平方向的仰角是12°,飞跃的水平距离是35 m,为了安全,摩托车在最高点与落地点的垂直落差约10 m,那么,骑手沿跑道飞出时的速度应为多少?(单位是km/h,精确到个位)
(参考数据:sin12°=0.2079,cos12°=0.9781,tan12°=0.2125)

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

中国跳水运动员进行10 m跳台跳水训练时,身体(看成一点)在空中的运动路线为如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10m,入水处距池边的距离为4 m,同时,运动员在距水面高度为5 m或5 m以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(1)求这条抛物线的解析式.
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3m,问此次跳水会不会失误?并通过计算说明理由.
(3)要使此次跳水不至于失误,该运动员按(1)中抛物线运行,且运动员在空中调整好入水姿势时,距池边的水平距离至多应为多少?

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.

(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?
(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2003年10月15日9时,“神舟”五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心F2为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A距地面200km,远地点B距地面350km.已知地球半径R=6371km.

(I)求飞船飞行的椭圆轨道的方程;
(II)飞船绕地球飞行了十四圈后,于16日5时59分返
回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105km,问飞船巡天飞行的平均速度是多少km/s?
(结果精确到1km/s)(注:km/s即千米/秒)

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20 m,拱顶距水面6 m,桥墩高出水面4 m,现有一货船欲过此孔,该货船水下宽度不超过18 m,目前吃水线上部分中央船体高5 m,宽16 m,且该货船在现在状况下还可多装1000 t货物,但每多装150 t货物,船体吃水线就要上升0.04 m,若不考虑水下深度,该货船在现在状况下能否直接或设法通过该桥孔?为什么?

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且这两物体间距离为4.5 cm,灯丝距顶面距离为2.8 cm,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m,镜深2 m,

(1)建立适当的坐标系,求抛物线的方程和焦点的位置;
(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

根据我国汽车制造的现实情况,一般卡车高3 m,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m的距离行驶.已知拱口AB宽恰好是拱高OC的4倍,若拱宽为a m,求能使卡车安全通过的a的最小整数值.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP、BP运到P处(如图所示).已知PA="100" m,PB="150" m,∠APB=60°,试说明怎样运土最省工.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m万千米和m万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为,求该彗星与地球的最近距离.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设F(1,0),点M在x轴上,点P在y轴上,且=2=0;
(1)当点P在y轴上运动时,求点N的轨迹C的方程;
(2)设A(x1,y1),B(x2,y2),D(x3,y3)是曲线C上除去原点外的不同三点,且成等差数列,当线段AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题