(本小题满分12分)
已知函数f(x)=a-x-lnx(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,证明:(x-1)(lnx-f(x))≥0.
(本题满分14分)已知函数。
(Ⅰ)若函数在上为增函数,求正实数的取值范围;
(Ⅱ)当时,求在上的最大值和最小值;
(Ⅲ)当时,求证:对大于的任意正整数,都有 。
((本小题满分12分)
已知x>,函数f(x)=,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.