高中数学

定义函数,若存在常数,对于任意,存在唯一的,使得,则称函数上的“均值”为,已知,则函数上的“均值”为          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义:如果函数在定义域内给定区间上存在,满足,则称函数上的“平均值函数”,是它的一个均值点,例如上的平均值函数,就是它的均值点.现有函数上的平均值函数,则实数的取值范围是        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义:如果函数在定义域内给定区间上存在,满足,则称函数上的“平均值函数”,是它的一个均值点,例如上的平均值函数,就是它的均值点.现有函数上的平均值函数,则实数的取值范围是          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

实数满足,则的最小值是
           .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数对应的曲线在点处的切线与轴的交点为,若
,则            

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义的夹角),给出下列命题.




⑤设,则
其中正确的序号为                  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】如果对定义在R上的函数,对任意两个不相等的实数都有,则称函数为“M函数”.
给出下列函数:
;②;③;④
以上函数是“M函数”的所有序号为__________(把所有正确命题的序号都填上).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对大于的自然数的三次幂可用奇数进行以下方式的“分裂” 仿此,若的“分裂”数中有一个是,则的值为     .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对大于的自然数的三次幂可用奇数进行以下方式的“分裂” 仿此,若的“分裂”数中有一个是,则的值为     .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

,若恒成立,则实数的最大值是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对定义在区间D上的函数,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
在区间上可被替代;
可被替代的一个“替代区间”为
在区间可被替代,则
,则存在实数,使得在区间 上被替代;
其中真命题的有           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】对定义在区间D上的函数,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
在区间上可被替代;
可被替代的一个“替代区间”为
在区间可被替代,则
,则存在实数,使得在区间 上被替代;
其中真命题的有           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
则函数f(x)=(ex)*的最小值为是        .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】已知函数f(x)定义域为D,若∀a,b,c∈D,f(a),f(b),f(c)都是某一三角形的三边,则称f(x)为定义在D上的“保三角形函数”,以下说法正确的是      .
①f(x)=2(x∈R)不是R上的“保三角形函数”
②若定义在R上的函数f(x)的值域为[,2],则f(x)一定是R上的“保三角形函数”
③f(x)=是其定义域上的“保三角形函数”
④当t>1时,函数f(x)=ex+t一定是[0,1]上的“保三角形函数”

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于定义在上的函数,若存在距离为的两条直线,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:
;②;③;④
其中在区间上通道宽度可以为的函数有          (写出所有正确的序号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学函数迭代填空题