已知,函数的零点分别为,函数的零点分别为,则的最小值为( )
A. | B.2 | C. | D.1 |
已知函数,,函数的最小值为.
(1)求;
(2)是否存在实数、同时满足以下条件:
①;
②当的定义域为时,值域为.若存在,求出、的值;若不存在,说明理由
已知直线y=mx与函数的图象恰好有3个不同的公共点,则实数m的取值范围是( )
A.(,4) |
B.(,+∞) |
C.(,5) |
D.(,) |
设函数,若对任意给定的,都存在唯一的,满足,则正实数的最小值是( )
A. | B. | C.2 | D.4 |
已知定义在 上的函数 ( 为实数)为偶函数,记 ,则 的大小关系为()
A. | B. | C. | D. |
命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:指数函数f(x)=(3﹣2a)x是增函数,若p∨q为真,p∧q为假,求实数a的取值范围.
设f(x)=为奇函数,a为常数.
(1)求a的值;
(2)判断f(x)在区间(1,+∞)上的单调性,并证明你的结论;
(3)若对于区间(3,4)上的每一个x的值,不等式f(x)>恒成立,
求实数m的取值范围.