某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;
(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.
节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如下表所示的分布:
200 |
300 |
400 |
500 |
|
0.20 |
0.35 |
0.30 |
0.15 |
若进这种鲜花500束,则利润的均值为( )
A.706元 | B.690元 | C.754元 | D.720元 |
有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为( )
A.4 | B.4.5 | C.4.75 | D.5 |
袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量为此时已摸球的次数,求:
(1)随机变量的概率分布列;(2)随机变量的数学期望与方差.
甲,乙两人在相同条件下练习射击,每人打发子弹,命中环数如下
甲 |
6 |
8 |
9 |
9 |
8 |
乙 |
10 |
7 |
7 |
7 |
9 |
则两人射击成绩的稳定程度是__________________。
在一次歌手大奖赛上,七位评委为歌手打出的分数如下:,,,,,,,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )
A. | B. | C. | D. |
某教师出了一份共3道题的测试卷,每道题1分,全班得3分,2分,1分,0分的学生所占比例分别为30%,40%,20%,10%,若全班30人,则全班同学的平均分是