某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)
(本小题满分14分)设函数(,). (1)若函数在其定义域内是减函数,求的取值范围; (2)函数是否有最小值?若有最小值,指出其取得最小值时的值,并证明你的结论.
(本题14分)用长度为18cm的钢条围成一个长方体形状的框架,要求长方体的长和宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积为多少?
(本题14分)已知,,设. (1)求函数的图像的对称轴及其单调递增区间; (2)当,求函数的值域及取得最大值时的值; (3)若分别是锐角的内角的对边,且,,试求的面积.
(本题14分)已知函数 (1)讨论的单调区间; (2)若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。
(本题12分)函数。 (1)求的最小正周期; (2)若,,求的值。