某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)
在锐角△ABC中,内角A,B,C的对边分别为且. (1)求角A的大小; (2) 若求△ABC的面积.
已知点(0,),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点. (Ⅰ)求的方程; (Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
已知 为坐标原点, 为函数 图像上一点,记直线 的斜率 . (Ⅰ) 若函数 在区间 上存在极值,求实数 的取值范围; (Ⅱ) 当 时,不等式 恒成立,求实数 的取值范围.
如图,中,两点分别是线段的中点,现将沿折成直二面角。 (Ⅰ) 求证:; (Ⅱ)求直线与平面所成角的正切值.
已知单调递增的等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求使成立的正整数的最小值.