高中数学

设随机变量X的分布列为P(X=k)=pk(1-p)1-k(k=0.1,0<p<1),则E(X)=________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在2008年北京奥运会羽毛球女单决赛中,中国运动员张宁以2:1力克排名世界第一的队友谢杏芳,蝉联奥运会女单冠军.羽毛球比赛按“三局二胜制”的规则进行(即先胜两局的选手获胜,比赛结束),且各局之间互不影响.根据两人以往的交战成绩分析,谢杏芳在前两局的比赛中每局获胜的概率是0.6,但张宁在前二局战成1:1的情况下,在第三局中凭借过硬的心理素质,获胜的概率为0.6.若张宁与谢杏芳下次在比赛上相遇.
(1)求张宁以2:1获胜的概率;
(2)求张宁失利的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

姚明比赛时罚球命中率为90%,则他在3次罚球中罚失1次的概率是      

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(I)求开球第4次发球时,甲、乙的比分为1比2的概率;
(II)求开始第5次发球时,甲得分领先的概率。

来源:2012年全国普通高等学校招生统一考试文科数学
  • 更新:2022-08-19
  • 题型:未知
  • 难度:未知

某班主任对全班50名学生进行了作业量多少的调查,数据如下表:

 
认为作业多
认为作业不多
总数
喜欢玩电脑游戏
18
9
27
不喜欢玩电脑游戏
8
15
23
总数
26
24
50

根据表中数据得到5.059,因为p(K≥5.024)=0.025,
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )
(A)97.5%     (B) 95%       (C)90%        (D)无充分根据

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(10分)有10件产品,其中有2件次品,从中随机抽取3件,求:
(1)其中恰有1件次品的概率;(2)至少有一件次品的概率、

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b {1,2,3,4},若|ab| 1,则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为         (分式表示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知ABC三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从ABC三个箱子中各摸出1个球.
(Ⅰ)若用数组中的分别表示从ABC三个箱子中摸出的球的号码,请写出数组的所有情形,并回答一共有多少种;
(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设随机变量X~B(2,p),Y~B(3,p),若P(X≥1)=,则P(Y=2)=________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某射手射击1次,击中目标的概率是0.9。她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是
③他至少击中目标1次的概率是
④他击中目标2次的概率是0.81.
其中正确结论的序号是              (写出所有正确结论的序号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设随机变量的概率分布列为

(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是2/3,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两人将参加某项测试,他们能达标的概率都是0.8,设随机变量为两人中能达标的人数,则的数学期望        .   

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中结论正确的是________.(写出所有正确结论的序号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图;现有一迷失方向的小青蛙在3处,它每跳动一次可以等机会地进入相邻的任意一格(如若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入l,2,4,5处),则它在第三次跳动后,进入5处的概率是

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学正交试验设计方法试题