成都市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的则被淘汰。若现有500人参加测试,学生成绩的频率分布直方图如下:
(I)求获得参赛资格的人数;
(II)根据频率直方图,估算这500名学生测试的平均成绩;
(III)若知识竞赛分初赛和复赛,在初赛中每人最多有3次选题答题的机会,累计答对2题或答错2题即终止,答对2题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲通过初赛的概率.
有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9
[23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12
[35.5,39.5) 7 [39.5,43.5) 3
根据样本的概率分布估计,大于或等于31.5的数据约占( )
A. | B. | C. | D. |
在数学趣味知识培训活动中,甲、乙两名学生的6次培训成绩如下茎叶图所示:
(Ⅰ)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)从乙的6次培训成绩中随机选择2个,试求选到123分的概率.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,
求数学成绩在[50,90)之外的人数.
分数段 |
[50,60) |
[60, 70) |
[70,80) |
[80,90) |
x∶y |
1∶1 |
2∶1 |
3∶4 |
4∶5 |
某学校100名学生期中考试语文成绩的频率分布直方图如下右图所示,其中成绩分组区间是:,,,,。
求图中a的值;
根据频率分布直方图,估计这100名学生语文成绩的平均分;
若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数
之比如下表所示,求数学成绩在之外的人数。
分数段 |
||||
x:y |
1:1 |
2:1 |
3:4 |
4:5 |
某学校为了解该校600名男生的百米成绩(单位:s),随机选择了50名学生进行调查,
下图是这50名学生百米成绩的频率分布直方图。根据样本的频率分布,估计这600名学生中成绩在(单位:s)内的人数大约是 .
(本小题满分12分)我市为积极相应《全民健身条例》大力开展学生体育活动,如图是委托
调查机构在市区的两所学校校、校中分别随机抽取了名高二年级的学生当月体育锻炼时间的茎
叶图(单位:小时)
(1)根据茎叶图,分别写将两所学校学生当月体育锻炼 时间的众数、中位数和平均数填入下表;
|
校 |
校 |
众数 |
|
|
中位数 |
|
|
平均数 |
|
|
(2)根据茎叶图,求校学生的月体育锻炼时间的方差;
(3)若学生月体育锻炼的时间低于小时,就说明该生体育锻炼时间严重不足.根据茎叶图估计、
两所学校的学生体育锻炼严重不足的频率.
国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:
由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:
(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);
(Ⅱ)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.
(注:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],其中为数据x1,x2,…,xn的平均数.)
2015年五一节”期间,高速公路车辆“较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:
(1)求a的值,并说明交警部门采用的是什么抽样方法?
(2)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率;
(3)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1)。
某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:,,…, 后得到如下频率分布直方图.
(Ⅰ)求分数在内的频率;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数.不低于90分的概率.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用表示抽取结束后的总记分,求的分布列和数学期望.
对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中的数据,填好2×2列表,并计算在多大的程度上可以认为性别与是否爱好体育有关系:
(2)若已从男生中选出3人,女生中选出2人,从这5人中选出2人担任活动的协调人,求选出的两人性别相同的概率.
|
男 |
女 |
总计 |
爱好体育 |
|
|
|
爱好文娱 |
|
|
|
总 计 |
|
|
|
参考数据:
0.5 |
0.4 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:
(1)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);
(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.
将容量为n的样本中的数据分成6组,绘制频率分布直方图. 若第一组至第六组数据的频率之比为2:3:4:6: 4:1,且前三组数据的频数之和等于36,则n等于 .
某高校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组
[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.