某学校100名学生期中考试语文成绩的频率分布直方图如下右图所示,其中成绩分组区间是:,,,,。求图中a的值;根据频率分布直方图,估计这100名学生语文成绩的平均分;若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数。
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. 求证:(1)AM∥平面BDE; (2)AM⊥平面BDF.
已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=,b=. (1)求a和b的夹角θ; (2)若向量ka+b与ka-2b互相垂直,求k的值.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证: (1)函数f(x)在区间(0,1)是增函数; (2)an<an+1<1.
用数学归纳法证明不等式:>1(n∈N*且n>1).