高中数学

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面,.设分别为中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面;
(Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,设点上的动点,求当取得最小值时的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,求二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,平面ABCD,平面ABCD,

(1)求证:平面BDE;
(2)求锐二面角的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,长方体中,为线段的中点,.

(Ⅰ)证明:⊥平面
(Ⅱ)求点到平面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知是圆的直径,垂直圆所在的平面,是圆上任一点,是线段的中点,是线段上的一点.

求证:(Ⅰ)若为线段中点,则∥平面
(Ⅱ)无论何处,都有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,AC⊥BC,AB⊥,D为AB的中点,且CD⊥

(Ⅰ)求证:平面⊥平面ABC;
(2)求多面体的体积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题