高中数学

(本小题满分12分)如图三棱锥中,.

证明:(Ⅰ)面
(Ⅱ)求二面角的余弦值..

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m⊂β,则α⊥β;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.
其中正确的命题是( )

A.①② B.②③ C.③④ D.①④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是两条不同的直线,是两个不同的平面,有下列四个命题:
①若 则;   
②若 则
③若 则;  
④若 则.
其中正确命题的序号是(   )

A.③④ B.①② C.②④ D.②③
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

a,b,c表示直线,M表示平面,给出下列四个命题:
①若a∥M,b∥M,则a∥b;
②若bM,a∥b,则a∥M;
③若a⊥c,b⊥c,则a∥b;
④若a⊥M,b⊥M,则a∥b.
⑤a⊥M,bM,若b∥M,则b⊥a
其中正确命题的序号是          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线及平面,则下列命题正确的是              (   )

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为两条直线,为两个平面,下列四个命题中,正确的是(  )

A.若所成角相等,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,直四棱柱的底面是菱形,侧面是正方形,是棱的延长线上一点,经过点的平面交棱于点

(1)求证:平面平面
(2)求二面角的平面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同直线,是一个平面,则下列说法正确的是(  )

A.若.b,则
B.若,b,则
C.若,则
D.若,b⊥,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若两个平面互相垂直,则下列命题中正确的是(  )

A.一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
B.一个平面内的已知直线必垂直于另一个平面内的无数条直线;
C.一个平面内的任意一条直线必垂直于另一个平面;
D.过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有三个命题:
①垂直于同一个平面的两条直线平行;
②∀x∈R,x4>x2
③命题“所有能被2整除的整数都是偶数”的否定是:所有能被2整除的整数都不是偶数.
其中正确命题的个数为(  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥

(Ⅰ)证明:平面
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三条不重合的直线及三个不重合的平面,下列命题正确的是

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题