数列满足,是常数. ⑴当时,求及的值; ⑵数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; ⑶求的取值范围,使得存在正整数,当时总有.
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0. (Ⅰ)求公差d的取值范围. (Ⅱ)指出S1,S2,…,S12中哪一个值最大,并说明理由.
已知等差数列 { a n } 中, a 3 a 7 = - 16 , a 4 + a 5 = 0 求 { a n } 前 n 项和 S n .