已知函数
,
.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为
,其中
,求
的最小值.
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数
为奇函数,求实数
的值;
(2)在(1)的条件下,求函数
在区间
上的所有上界构成的集合;
(3)若函数
在
上是以3为上界的有界函数,求实数
的取值范围.
设函数f(x)=
a为常数且a∈(0,1).
(1)当a=
时,求f
;
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[
,
]上的最大值和最小值.
已知函数
,
.
(1)若
,判断函数
的奇偶性,并加以证明;
(2)若函数
在
上是增函数,求实数
的取值范围;
(3)若存在实数
使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
定义在
上的函数
同时满足以下条件:
①
在(0,1)上是减函数,在(1,+∞)上是增函数;
②
是偶函数;
③
在x=0处的切线与直线
y=x+2垂直.
(1)求函数
=
的解析式;
(2)设g(x)=
,若存在实数x∈[1,e],使
<
,求实数m的取值范围..
已知函数
.
(Ⅰ)当
,函数
有且仅有一个零点
,且
时,求
的值;
(Ⅱ)若函数
在区间
上为单调函数,求
的取值范围.
已知实数
,函数
.
(1)当
时,求
的最小值;
(2)当
时,判断
的单调性,并说明理由;
(3)求实数
的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
已知函数
(
为实常数).
(1)若函数
图像上动点
到定点
的距离的最小值为
,求实数
的值;
(2)若函数
在区间
上是增函数,试用函数单调性的定义求实数
的取值范围;
(3)设
,若不等式
在
有解,求
的取值范围.