在 中, , , ,点 是 所在平面内一点,则 取得最小值时,下列结论正确的是
A. |
点 是 三边垂直平分线的交点 |
B. |
点 是 三条内角平分线的交点 |
C. |
点 是 三条高的交点 |
D. |
点 是 三条中线的交点 |
如图, 、 、 分别是 各边中点,则以下说法错误的是
A. |
和 的面积相等 |
B. |
四边形 是平行四边形 |
C. |
若 ,则四边形 是菱形 |
D. |
若 ,则四边形 是矩形 |
已知正方形 与正方形 ,正方形 绕点 旋转一周.
(1)如图①,连接 、 ,求 的值;
(2)当正方形 旋转至图②位置时,连接 、 ,分别取 、 的中点 、 ,连接 、试探究: 与 的关系,并说明理由;
(3)连接 、 ,分别取 、 的中点 、 ,连接 , ,请直接写出线段 扫过的面积.
如图,在 中, ,以点 为圆心, 为半径的圆交 于点 ,点 在边 上,且 .
(1)判断直线 与 的位置关系,并说明理由;
(2)已知 , ,求 的半径.
如图,点 、 在反比例函数 的图象上,延长 交 轴于 点,若 的面积是12,且点 是 的中点,则 .
如图,在 中, , ,点 、 在 上,边 、 分别交 于 、 两点,点 是 的中点,则 .
《九章算术》中一道"引葭赴岸"问题:"今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?"题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇 生长在它的中央,高出水面部分 为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部 恰好碰到岸边的 处(如图),水深和芦苇长各多少尺?则该问题的水深是 尺.
如图,折叠矩形纸片 ,使点 落在点 处,折痕为 ,已知 , ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , , 平分 交 于点 , ,交 于点 ,则 的度数是
A. |
|
B. |
|
C. |
|
D. |
|
如图,四边形 内接于 , ,延长 到点 ,使得 ,连接 .
(1)求证: ;
(2)若 , , ,求 的值.
如图,射线 , 互相垂直, ,点 位于射线 的上方,且在线段 的垂直平分线 上,连接 , .把线段 绕点 按逆时针方向旋转得到对应线段 ,若点 恰好落在射线 上,则点 到射线 的距离 .
如图,四边形 为菱形, ,延长 到 ,在 内作射线 ,使得 ,过点 作 ,垂足为 ,若 ,则对角线 的长为 (结果保留根号)
在几何体表面上,蚂蚁怎样爬行路径最短?
(1)如图①,圆锥的母线长为 , 为母线 的中点,点 在底面圆周上, 的长为 .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 爬行到点 的最短路径,并标出它的长(结果保留根号).
(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. 是圆锥的顶点,点 在圆柱的底面圆周上,设圆锥的母线长为 ,圆柱的高为 .
①蚂蚁从点 爬行到点 的最短路径的长为 (用含 , 的代数式表示).
②设 的长为 ,点 在母线 上, .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 爬行到点 的最短路径的示意图,并写出求最短路径的长的思路.