初中数学

我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有 x 匹,大马有 y 匹,则下列方程组中正确的是 (    )

A.

x + y = 100 y = 3 x

B.

x + y = 100 x = 3 y

C.

x + y = 100 1 3 x + 3 y = 100

D.

x + y = 100 1 3 y + 3 x = 100

来源:2020年湖北省襄阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了  场.

来源:2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

某公司分别在 A B 两城生产同种产品,共100件. A 城生产产品的总成本 y (万元)与产品数量 x (件 ) 之间具有函数关系 y = a x 2 + bx .当 x = 10 时, y = 400 ;当 x = 20 时, y = 1000 B 城生产产品的每件成本为70万元.

(1)求 a b 的值;

(2)当 A B 两城生产这批产品的总成本的和最少时,求 A B 两城各生产多少件?

(3)从 A 城把该产品运往 C D 两地的费用分别为 m 万元 / 件和3万元 / 件;从 B 城把该产品运往 C D 两地的费用分别为1万元 / 件和2万元 / 件. C 地需要90件, D 地需要10件,在(2)的条件下,直接写出 A B 两城总运费的和的最小值(用含有 m 的式子表示).

来源:2020年湖北省武汉市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

我国古代数学著作《孙子算经》中有"鸡兔同笼"问题:"今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何".设鸡有 x 只,兔有 y 只,则根据题意,下列方程组中正确的是 (    )

A.

x + y = 35 2 x + 4 y = 94

B.

x + y = 35 4 x + 2 y = 94

C.

2 x + y = 35 x + 4 y = 94

D.

x + 4 y = 35 2 x + y = 94

来源:2020年湖北省随州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往 A 地240吨, B 地260吨,运费如下表(单位:元 / 吨).

目的地

生产厂

A

B

20

25

15

24

(1)求甲、乙两厂各生产了这批防疫物资多少吨?

(2)设这批物资从乙厂运往 A x 吨,全部运往 A B 两地的总运费为 y 元.求 y x 之间的函数关系式,并设计使总运费最少的调运方案;

(3)当每吨运费均降低 m ( 0 < m 15 m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求 m 的最小值.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

我国传统数学名著《九章算术》记载:"今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?"译文:"假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?"根据以上译文,提出以下两个问题:

(1)求每头牛、每只羊各值多少两银子?

(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.

来源:2020年湖北省黄石市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

我国古代数学著作《九章算术》"盈不足"一章中记载:"今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何".意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒 x 斛,1个小桶盛酒 y 斛,下列方程组正确的是 (    )

A.

5 x + y = 3 x + 5 y = 2

B.

5 x + y = 2 x + 5 y = 3

C.

5 x + 3 y = 1 x + 2 y = 5

D.

3 x + y = 5 2 x + 5 y = 1

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量(件与售价(元件)为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:

(元件)

4

5

6

(件

10000

9500

9000

(1)求的函数关系式(不求自变量的取值范围);

(2)在销售过程中要求销售单价不低于成本价,且不高于15元件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?

(3)抗疫期间,该商场这种商品售价不大于15元件时,每销售一件商品便向某慈善机构捐赠,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.

来源:2020年湖北省鄂州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元 / 个,乙种型号水杯进价为45元 / 个,下表是前两月两种型号水杯的销售情况:

时间

销售数量(个 )

销售收入(元 ) (销售收入 = 售价 × 销售数量)

甲种型号

乙种型号

第一月

22

8

1100

第二月

38

24

2460

(1)求甲、乙两种型号水杯的售价;

(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯 a 个,利润为 w 元,写出 w a 的函数关系式,并求出第三月的最大利润.

来源:2020年贵州省遵义市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.

(1)甲、乙两种商品的进货单价分别是多少?

(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,之间的部分数值对应关系如表:

销售单价(元件)

11

19

日销售量(件

18

2

请写出当时,之间的函数关系式.

(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?

来源:2020年贵州省黔东南州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

"十 · 一"国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车 x 辆,37座客车 y 辆.根据题意,得 (    )

A.

x + y = 10 49 x + 37 y = 466

B.

x + y = 10 37 x + 49 y = 466

C.

x + y = 466 49 x + 37 y = 10

D.

x + y = 466 37 x + 49 y = 10

来源:2020年黑龙江省绥化市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克16元;乙种蔬菜进价每千克元,售价每千克18元.

(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求的值.

(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜千克为正整数),求有哪几种购买方案.

(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于,求的最大值.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买 A B C 三种奖品, A 种每个10元, B 种每个20元, C 种每个30元,在 C 种奖品不超过两个且钱全部用完的情况下,有多少种购买方案 (    )

A.

12种

B.

15种

C.

16种

D.

14种

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

某商场准备购进两种书包,每个种书包比种书包的进价少20元,用700元购进种书包的个数是用450元购进种书包个数的2倍,种书包每个标价是90元,种书包每个标价是130元.请答案下列问题:

(1)两种书包每个进价各是多少元?

(2)若该商场购进种书包的个数比种书包的2倍还多5个,且种书包不少于18个,购进两种书包的总费用不超过5450元,则该商场有哪几种进货方案?

(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,种书包各有几个?

来源:2020年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

a = 2 b = 1 是二元一次方程组 3 2 ax + by = 5 ax - by = 2 的解,则 x + 2 y 的算术平方根为 (    )

A.

3

B.

3, - 3

C.

3

D.

3 - 3

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学二元一次方程组试题