高中数学

有一个正四棱台形状的油槽,可以装油,假如它的两底面边长分别等于,求它的深度为多少

来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

半径为的半圆卷成一个圆锥,则它的体积为(   )

A. B. C. D.
来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是(   )

A. B. C. D.
来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积

来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加 (底面直径不变)。
(1)      分别计算按这两种方案所建的仓库的体积;
(2)      分别计算按这两种方案所建的仓库的表面积;
(3)      哪个方案更经济些?

来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

棱长都是的三棱锥的表面积为(    )

A. B. C. D.
来源:空间几何体
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,
EF=3/2,EF与面AC的距离为2,则该多面体的体积为(    )
 A.9/2       B.5    C,     D.5/2

来源:多面体的体积
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

直三棱柱ABC—A/B/C/的体积为V,P、Q分别为侧棱AA/、CC/上的点,且AP=C/Q,则四棱锥B—APQC的体积是( )

A. B. C. D.
来源:体积问题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在四面体ABCD中,PQ分别为棱BCCD上的点,且BP=2PCCQ=2QDR为棱AD的中点,则点AB到平面PQR的距离的比值为         

来源:2009年全国高中数学联赛江苏赛区初赛试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.

来源:2008年全国高中数学联合竞赛一试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm2,则这三个正方体的体积之和为                                                         ()

A.764 cm3或586 cm3 B.764 cm3 
C.586 cm3或564 cm3 D.586 cm3
来源:2008年全国高中数学联合竞赛一试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱台A1B1C1ABC中,已知A1A⊥底面ABCA1A= A1B1= B1C1=aB1BBC,且B1B和底面ABC所成的角45º,求这个棱台的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在三棱锥中,.则三棱锥体积的最大值为                

来源:2009年河北省高中数学竞赛试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个六棱柱的底面是正六边形,其侧棱垂直于底面.已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为 9 8 ,底面周长为3,则这个球的体积为.

来源:2008年全国高中数学联赛湖南省区预赛试题
  • 更新:2022-06-20
  • 题型:未知
  • 难度:未知

棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.

来源:立体几何
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学表面展开图试题