养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加 (底面直径不变)。 (1) 分别计算按这两种方案所建的仓库的体积; (2) 分别计算按这两种方案所建的仓库的表面积; (3) 哪个方案更经济些?
设非负等差数列的公差,记为数列的前n项和,证明: 1)若,且,则; 2)若则。
求解不等式。
已知椭圆C:(),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。
设定义在[0,2]上的函数满足下列条件: ①对于,总有,且,; ②对于,若,则. 证明:(1)();(2)时,.
在数列中,,是给定的非零整数,. (1)若,,求; (2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.