如图,四边形 ABCD , DEFG 都是正方形,连接 AE , CG , AE 与 CG 相交于点 M , CG 与 AD 相交于点 N .求证:
(1) AE = CG ;
(2) AN ⋅ DN = CN ⋅ MN .
解方程:(每题3分)① ②
计算或化简:(每题3分) ①8+(-10)―(―5) ② ③ ④(5x-3y)-(2x-y) ⑤a2-a-[2a-(3a2+a)]
如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为正半轴上一动点(OC>1),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E. (1)△OBC与△ABD全等吗?判断并证明你的结论; (2)将等边△AOB沿轴翻折,B点的对称点为B' ①点B'会落在直线DE上么?请说明理由. ②随着点C位置的变化,点E的位置是否会发生变化? 若没有变化,求直接写出点E
已知某种水果的批发单价与批发量的函数关系如图所示. (1)请说明图中①、②两段函数图象的实际意义. (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b,另一部分与参加比赛的人数x(人)成正比例. 当x=20时,y=1600,当x=30时,y=2000. (1)求y与x之间的函数关系式; (2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?