(1)发现:如图①所示,在正方形 A B C D 中, E 为AD边上一点,将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 C D 边于 G 点.求证: △ B F G ≌ △ B C G ;
(2)探究:如图②,在矩形 A B C D 中, E 为 A D 边上一点,且 A D = 8 , A B = 6 .将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 B C 边于 G 点,延长 B F 交 C D 边于点 H ,且 F H = C H ,求 A E 的长.
(3)拓展:如图③,在菱形 A B C D 中, A B = 6 , E 为 C D 边上的三等分点, ∠ D = 60 ° .将 △ A D E 沿 A E 翻折得到 △ A F E ,直线 E F 交 B C 于点 P ,求 P C 的长.
先化简,再求值:,其中x是整数且-3﹤x﹤1.
如图,经过原点的抛物线与轴的另一个交点为A.过点P(1,)作直线PM⊥轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP. (1)当=3时,求点A的坐标和BC的长; (2)当>1时,连结CA,当CA⊥CP时,求的值. (3)过点P作PE⊥PC且PE =PC,问是否存在,使得点E落x轴在上?若存在,求出所有满足要求的的值,并写出相对应的点E坐标;若不存在,请说明理由.
如图,△ABC中,E是AC上一点,且AE =AB,,以AB为直径的⊙交AC于点D,交EB于点F. (1)求证:BC与⊙O相切; (2)若AB=8,sin∠EBC=,求AC的长.
某私营服装厂根据2014年市场分析,决定2015年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:
设每周制作西服x件,休闲服y件,衬衣z件。 (1)请你分别从件数和工时数两个方面用含有x、y 的代数式表示衬衣的件数z。 (2)求y与x之间的函数关系式。 (3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?
如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE. (1)求证:四边形AFCE为菱形; (2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式,并说明理由。