如图,在梯形中,∥,,. (1)求sin∠的值; (2)若长度为,求梯形的面积.
某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.(1)设一块绿化区的长边为xm,写出工程总造价y与x的函数关系式(写出x的取值范围).(2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考值:)
(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;(3)在(2)中,若BD=2,DC=3,求AD的长.
阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA又∵,,∴∴解决问题:(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).
作为一项惠农强农应对国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已取得成效,在气温较低的季节,电冰箱也有一定的销量.我市某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图所示:根据图提供的信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价;(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价;(3)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.
先化简,再求值:,其中x=+1.