(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;(3)在(2)中,若BD=2,DC=3,求AD的长.
如图,已知:AB,CD交于点O,CA=CO,BO=BD,点Q是BC的中点,点E,F分别是OA,OD的中点,连接QE,QF,试探讨QE,QF的大小关系,并说明理由
如图,在△ABC中,点D,E,F分别在BC,AB,AC 边上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°,那么四边形AEDF是 形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是 形;(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是 形,证明你的结论(仅需证明第⑶题结论).
如图,点C在BD上,在线段BD的同侧作等边△ABC和等边△CDE,AD、BE相交于点F.(1)求证:BE=AD;(2)求∠AFB的度数;(3)设BE与AC交于点M,CE与AD交于点N,连接MN,试判断△MCN的形状,并说明理由.
如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)∠EDC=∠ECD;(2)OC=OD;(3)OE是线段CD的垂直平分线.
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.