如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 DF ̂ 的中点.
(Ⅰ)设P是 CE ̂ 上的一点,且 AP ⊥ BE ,求 ∠ CBP 的大小;
(Ⅱ)当 AB = 3 , AD = 2 时,求二面角 E ﹣ AG ﹣ C 的大小.
(本小题满分12分)如图,四棱锥P−ABCD中,底面ABCD为平行四边形,O为AC的中点,PO⊥平面ABCD,M 为PD的中点,∠ADC=45o,AD=AC =1,PO="a" (1)证明:DA⊥平面PAC; (2)如果二面角M−AC−D的正切值为2,求a的值.
(本小题满分12分)已知 (1)求函数的最小正周期及在区间的最大值; (2)在中,所对的边分别是,, 求周长的最大值.
(本小题满分10分)等差数列中,,公差且成等比数列,前项的和为. (1)求及; (2)设,,求.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (1)求A∪B,(∁UA)∩B; (2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整,都存在整数,使得成等差数列。 (2)存在无穷多个互不相似的三角形,其边长为正整数且成等差数列。