已知是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合.试问下列命题是否是真命题,如果是真命题,请给予证明;如果是假命题,请举反例说明. (1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上; (2)至多有一个元素; (3)当a1≠0时,一定有.
已知函数是,的一个极值点(I)求a的值;(II)证明:•
(本小题12分)已知动点P到定点A(0,1)的距离比它到定直线y = -2的距离小1.(I)求动点P的轨迹C的方程;(II)已知点Q为直线y= -1上的动点,过点q作曲线C的两条切线,切点分别为M,N,求的取值范围.(其中O为坐标原点)
.(本小题满分12分)如图,在四棱锥P-ABCD中,底面为正方形,PA丄平面ABCD,且PA=AD,E为棱PC上的一点,PD丄平面(I)求证:E为PC的中点;(II)若N为CD的中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角的大小.
(本小题满分12分)为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接科苗.(I )求三人注射的疫苗编号互不相同的概率;(II)设三人中选择的疫苗编号最大数为,求的分布列及数学期望.
(本小题满分12分).已知等差数列的前n项和为,公差d>0,且(I )求数列的通项公式;(II)若求数列的前n项和Tn.