公路上正在行驶的甲车,发现前方 20 m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 s (单位: m ) 、速度 v (单位: m / s ) 与时间 t (单位: s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至 9 m / s 时,它行驶的路程是多少?
(2)若乙车以 10 m / s 的速度匀速行驶,两车何时相距最近,最近距离是多少?
阅读解答:(1)填空:21-20= =2( )22-21= =2( )23-22= =2( )………(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立。(3)计算:20+21+22+23+24+…+21000
在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示。现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点。(1)请画出平移后的△DEF,并求△DEF的面积。(2)若连接AD、CF,则这两条线段之间的关系是
如图,在Rt△ABC中,∠B=90°,BC=6,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明现由.(3)当t为何值时,△DEF为直角三角形?请说明理由.
已知如图,AD∥BC,∠ABC=90o,AB=BC,点E是AB上的点,∠ECD=45o,连接ED,过D作DF⊥BC于F.(1)若∠BEC=75o,FC=4,求梯形ABCD的周长。(2)求证:ED=BE+FC.
当今,青少年视力水平下降已引起全社会的关注,为了了解某校4000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:解答下列问题:(1)本次抽样调查共抽测了 名学生.(2)参加抽测的学生的视力的众数在 范围.(3)若视力为4.9、5.0、5.1.及以上为正常,试估计该校学生的视力正常的人数约为多少?(4)请你就该学校学生的视力状况,谈一谈你的想法.