公路上正在行驶的甲车,发现前方 20 m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 s (单位: m ) 、速度 v (单位: m / s ) 与时间 t (单位: s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至 9 m / s 时,它行驶的路程是多少?
(2)若乙车以 10 m / s 的速度匀速行驶,两车何时相距最近,最近距离是多少?
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.
如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.
已知一次函数y=的图象是直线l1, ,l1与y轴相交于点A,与x轴相交于点B,直线l2经过点B,并且与y轴相交于点C,点C到原点的距离是6个单位长度。(1)求直线l2所对应的一次函数表达式;(2)求△ABC形的面积.
求下列各式中x的值:(1)9x2-64=0; (2)64(x+1)3=125
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作□DEFA.(1)当m=1时,求AE的长.(2)当0<m<3时,若□DEFA为矩形,求m的值;(3)是否存在m的值,使得□DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.