如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长 AB = 120 mm ,支撑板长 CD = 80 mm ,底座长 DE = 90 mm .托板 AB 固定在支撑板顶端点 C 处,且 CB = 40 mm ,托板 AB 可绕点 C 转动,支撑板 CD 可绕点 D 转动.(结果保留小数点后一位)
(1)若 ∠ DCB = 80 ° , ∠ CDE = 60 ° ,求点 A 到直线 DE 的距离;
(2)为了观看舒适,在(1)的情况下,把 AB 绕点 C 逆时针旋转 10 ° 后,再将 CD 绕点 D 顺时针旋转,使点 B 落在直线 DE 上即可,求 CD 旋转的角度.(参考数据: sin 40 ° ≈ 0 . 643 , cos 40 ° ≈ 0 . 766 , tan 40 ° ≈ 0 . 839 , sin 26 . 6 ° ≈ 0 . 448 , cos 26 . 6 ° ≈ 0 . 894 , tan 26 . 6 ° ≈ 0 . 500 , 3 ≈ 1 . 732 )
计算:﹣.
阅读理解 抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题. 问题解决 如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点. (1)写出点C的坐标,并说明∠ECF=90°; (2)在△PEF中,M为EF中点,P为动点. ①求证:PE2+PF2=2(PM2+EM2); ②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.
(1)如图1是某个多面体的表面展开图. ①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点; ②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理) (2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)
某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境: 请根据上面的信息,解决问题: (1)设AB=x米(x>0),试用含x的代数式表示BC的长; (2)请你判断谁的说法正确,为什么?
如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A. (1)求k的值; (2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?