如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长 AB = 120 mm ,支撑板长 CD = 80 mm ,底座长 DE = 90 mm .托板 AB 固定在支撑板顶端点 C 处,且 CB = 40 mm ,托板 AB 可绕点 C 转动,支撑板 CD 可绕点 D 转动.(结果保留小数点后一位)
(1)若 ∠ DCB = 80 ° , ∠ CDE = 60 ° ,求点 A 到直线 DE 的距离;
(2)为了观看舒适,在(1)的情况下,把 AB 绕点 C 逆时针旋转 10 ° 后,再将 CD 绕点 D 顺时针旋转,使点 B 落在直线 DE 上即可,求 CD 旋转的角度.(参考数据: sin 40 ° ≈ 0 . 643 , cos 40 ° ≈ 0 . 766 , tan 40 ° ≈ 0 . 839 , sin 26 . 6 ° ≈ 0 . 448 , cos 26 . 6 ° ≈ 0 . 894 , tan 26 . 6 ° ≈ 0 . 500 , 3 ≈ 1 . 732 )
如图以O为圆心的两个同心圆,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B,小圆的切线AC与大圆相交于点D,且OC平分∠ACB.⑴试判断BC所在的直线与小圆的位置关系,并说明理由;⑵试判断线段AC、AD、BC之间的数量关系,并说明理由;⑶若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积(结果保留π).
将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.⑴试判断△ODE和△OCF是否全等,并证明你的结论.⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
小明想给小东打电话,但忘记了电话号码中的一位数字,只记得号码是284□9456(□表示忘记的数字)⑴若小明从0至9的自然数中随机选取一个数字放在□位置,求他正确拨打小东电话的概率;⑵若□位置的数字是不等式组的整数解,求□可能表示的数字.
菱形ABCD的边长为5,两条对角线交于点O,且AO、BO的长分别是关于x的方程两根,求m的值.
解下列方程(1) (2)