如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长 AB = 120 mm ,支撑板长 CD = 80 mm ,底座长 DE = 90 mm .托板 AB 固定在支撑板顶端点 C 处,且 CB = 40 mm ,托板 AB 可绕点 C 转动,支撑板 CD 可绕点 D 转动.(结果保留小数点后一位)
(1)若 ∠ DCB = 80 ° , ∠ CDE = 60 ° ,求点 A 到直线 DE 的距离;
(2)为了观看舒适,在(1)的情况下,把 AB 绕点 C 逆时针旋转 10 ° 后,再将 CD 绕点 D 顺时针旋转,使点 B 落在直线 DE 上即可,求 CD 旋转的角度.(参考数据: sin 40 ° ≈ 0 . 643 , cos 40 ° ≈ 0 . 766 , tan 40 ° ≈ 0 . 839 , sin 26 . 6 ° ≈ 0 . 448 , cos 26 . 6 ° ≈ 0 . 894 , tan 26 . 6 ° ≈ 0 . 500 , 3 ≈ 1 . 732 )
如图所示,已知AC∥DE,∠1=∠2.求证:AB∥CD.
一个农妇要过河,随身携带一只小白兔、一篮萝卜和一只饥饿又爱追兔子的狗.她发现系在河边的小船一次只能载她本人和兔子、狗、萝卜其中之一过河,她不能让狗和兔子呆在一起(狗会吓坏可怜的小兔),也不能让小兔和萝卜留在一起(兔子会把萝卜全吃掉),怎么办?请你帮农妇想办法:她怎样来回渡河才能把三样东西安全带到对岸?
对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).
把下列命题改写成“如果……那么……”. (1)两直线平行,同位角相等; (2)在同一个三角形中,等角对等边; (3)两边一夹角对应相等的两个三角形全等.
下面是某班同学身高的统计表:
(1)请选择适当的组距绘制相应的频数分布直方图. (2)该班学生中,身高在哪个范围的人数最少?相应的频率是多少? (3)如果规定该年龄段少年身高大于160cm的为发育良好,请估计该班所在年级的500名学生中,发育良好的学生人数.