为了计算湖中小岛上凉亭 P 到岸边公路 l 的距离,某数学兴趣小组在公路 l 上的点 A 处,测得凉亭 P 在北偏东 60 ° 的方向上;从 A 处向正东方向行走200米,到达公路 l 上的点 B 处,再次测得凉亭 P 在北偏东 45 ° 的方向上,如图所示.求凉亭 P 到公路 l 的距离.(结果保留整数,参考数据: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 )
如图,已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16海里,一艘货轮从B港口以40海里/h的速度沿∠ABC=45°的BC方向航行.现测得C处位于A观测点北偏东79.8°(即∠DAC=79.8°)方向.求此时货轮C与AB之间的最近距离(精确到0.1海里). (参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,)
我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题: (1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k的值; (3)当x=16时,大棚内的温度约为多少度?
小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方是否公平?请说明理由.
如图,将一付三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F. (1)求证:CF∥AB; (2)求∠DFC的度数.
(1)用配方法解方程:. (2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.