如图1,在平面直角坐标系中,四边形 OABC 各顶点的坐标分别为 O ( 0 , 0 ) , A ( 3 , 3 3 ) 、 B ( 9 , 5 3 ) , C ( 14 , 0 ) ,动点 P 与 Q 同时从 O 点出发,运动时间为 t 秒,点 P 沿 OC 方向以1单位长度 / 秒的速度向点 C 运动,点 Q 沿折线 OA - AB - BC 运动,在 OA 、 AB 、 BC 上运动的速度分别为3, 3 , 5 2 (单位长度 / 秒),当 P 、 Q 中的一点到达 C 点时,两点同时停止运动.
(1)求 AB 所在直线的函数表达式;
(2)如图2,当点 Q 在 AB 上运动时,求 ΔCPQ 的面积 S 关于 t 的函数表达式及 S 的最大值;
(3)在 P 、 Q 的运动过程中,若线段 PQ 的垂直平分线经过四边形 OABC 的顶点,求相应的 t 值.
泰州凤凰城二日游,旅游信息: 根据此旅游信息:某公司组织一批员工到该风景区旅游,支付给旅行社28000元. (1)你能确定参加这次旅游的人数吗? (2)若该公司又组织第二批员工到凤凰城旅游并支付给旅行社29250元.如果这两批员工一次性去旅游,则该公司可节约旅游费用多少元?
矩形ABCD中,AB="6" cm,BC="12" cm ,点P从A出发,沿AB边以1cm/s的速度向点B匀速移动,同时点Q从点B出发,沿BC边以2cm/s的速度向点C匀速移动,设运动时间为t s. (1)t为何值时,△DPQ的面积等于28cm2; (2)若DQ⊥PQ时,求t的值;
如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E. (1)求证:CD2=DE·AD; (2)求证:∠BED=∠ABC.
如图,AB是⊙O的切线,切点为B,直线AO交⊙O于点C、D,若∠A=30°. (1)求∠D的度数; (2)过C点作⊙O的切线交AB于E,若CE=2,求⊙O的半径.
某篮球队在一次联赛中共进行了10场比赛,已知10场比赛的平均得分为88分,且前9场比赛的得分依次为:97、91、85、91、84、86、85、82、88. (1)求第10场比赛的得分; (2)求这10场比赛得分的中位数,众数和方差.