某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.
(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从 20 : 00 开始, 22 : 30 之前演出结束,问参与的小品类节目最多能有多少个?
如图,点B、F、C、E在一条直线上,BF=EC,AB∥ED,AC∥FD,求证:AC=DF.
如图:在88的正方形网格中,已知网格中小正方形的边长为1, 的三个顶点在格点上。 (1)画出关于直线的对称图形; (2)_____________直角三角形(填“是”或“不是” (3)的面积是_____________
尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).
如图,已知正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm, (1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动. ①若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由. ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为________cm/s时,在某一时刻也能够使△BPE与△CQP全等. (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD的四条边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在何处?
小王剪了两张直角三角形纸片,进行了如下的操作: 操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE. (1)如果AC=6cm,BC=8cm,可求得△ACD的周长为; (2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为; 操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.