如图,顶点为 M 的抛物线 y = a ( x + 1 ) 2 − 4 分别与 x 轴相交于点 A , B (点 A 在点 B 的右侧),与 y 轴相交于点 C ( 0 , − 3 ) .
(1)求抛物线的函数表达式;
(2)判断 ΔBCM 是否为直角三角形,并说明理由.
(3)抛物线上是否存在点 N (点 N 与点 M 不重合),使得以点 A , B , C , N 为顶点的四边形的面积与四边形 ABMC 的面积相等?若存在,求出点 N 的坐标;若不存在,请说明理由.
先化简,再求值:,其中
将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点. (1)直接写出AD=_____,AC=_______,BC=_______,四边形ABCD的面积=______; (2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数; (3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.
某商场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。为了扩大销售,增加赢利,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 (1)若该商场平均每天要赢利1200元,且让顾客尽可能感到实惠,每件衬衫应降价多少元? (2)求该商场平均每天赢利的最大值。
某小学某年级学生进行了体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题: (1)这次共抽取了多少名学生的一分钟跳绳测试成绩? (2)求第一组和第三组的频数; (3)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (4)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有______人。(直接写出答案)
如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA. (1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.