如图,在△ ABC中,∠ BAC=45°, AD⊥ BC于点 D, BD=6, DC=4,求 AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:
(1)分别以 AB, AC所在直线为对称轴,画出△ ABD和△ ACD的对称图形,点 D的对称点分别为点 E, F,延长 EB和 FC相交于点 G,求证:四边形 AEGF是正方形;
(2)设 AD= x,建立关于 x的方程模型,求出 AD的长.
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。 (1)求证:AC=AE; (2)求△ACD外接圆的半径。
生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗2000棵。种植A、B两种树苗的相关信息如下表:
设购买A种树苗x棵,造这片林的总费用为y元。解答下列问题: (1)写出y(元)与x(棵)之间的函数关系式; (2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?
如图,A、B是双曲线上的点,点A的坐标是(1,4),B是线段AC的中点. (1)求k的值; (2)求△OAC的面积.
学习了统计知识后,小明就本班同学喜欢的体育运动项目进行调查统计,如图是他通过收集数据绘制的两幅不完整的统计图. (1)该班共有多少名学生; (2)该班喜欢乒乓球的学生有多少名,并将条形统计图补充完整; (3)若小明所在的年级共有500名学生,估计该年级喜欢乒乓球的学生多少名;
已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B. 求证:△ABC≌△CDE