在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.
(1)施工方共有多少种租车方案?
(2)哪种租车方案费用最低,最低费用是多少?
如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,求证:以O为圆心,以OC为半径的圆与AB相切.下列结论正确的序号是.(少选酌情给分,多选、错均不给分)①AO="2CO" ;②AO="BC" ;③延长BC交⊙O与D,则A、B、D是⊙O的三等分点. ④图中阴影面积为:
台州市江南汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)求与的函数关系式;在保证商家不亏本的前提下,写出的取值范围假设这种汽车平均每周的销售利润为万元,试写出与之间的函数关系式;当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
已知关于x的一元二次方程有两个实数根为x1,x2.(x1≤x2)求k的取值范围试用含k的代数式表示x1与x2.当时.求k的值
如图,在平面直角坐标系中,抛物线经过,、,、,,且.求抛物线的解析式在抛物线上是否存在一点,使得是以为底边的等腰三角形?若存在,求出点的坐标,并判断这个等腰三角形是否为等腰直角三角形?若不存在,请说明理由;连接,为线段上的一个动点(点与、不重合),过作轴的垂线与这个二次函数的图象交于点,设线段的长为,点的横坐标为,求与之间的函数关系式,并写出自变量的取值范围
如图,在等腰中,,为斜边上的动点,若,交于、于.如图1,若时,则=;如图2,若时,求证:如图3,当= 时,.