将直线 向下平移1个单位长度,得到直线 ,若反比例函数 y = k x 的图象与直线 相交于点 ,且点 的纵坐标是3.
(1)求 和 的值;
(2)结合图象求不等式 3 x + m > k x 的解集.
如图,在 ⊙ O 中, A B 是直径,点 D 是 ⊙ O 上一点且 ∠ B O D = 60 ° ,过点 D 作 ⊙ O 的切线 C D 交 A B 的延长线于点 C , E 为 A D ⏜ 的中点,连接 D E , E B . (1)求证:四边形 B C D E 是平行四边形; (2)已知图中阴影部分面积为 6 π ,求 ⊙ O 的半径 r .
现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
解不等式组:,并把解集在数轴上表示出来.
抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为 上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.