扬州教育推出的"智慧学堂"已成为同学们课外学习的得力助手.为了解同学们"智慧学堂"平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ,扇形统计图中表示 A 等级的扇形圆心角为 ° ;
(2)补全条形统计图;
(3)学校拟对"不太熟练或不熟练"的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
解关于的方程(其中为常数)
计算
问题背景: 如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔); 探究发现:如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔; 拓展迁移:如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片; ①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由; ②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .
四边形ABCD是平行四边形,AB=3,AD= 5,高DE=2.建立如图所示的平面直角坐标系,其中点A与坐标原点O重合.求BC边所在直线的解析式;设点F为直线BC与y轴的交点,求经过点B,D,F的抛物线解析式;判断▱ABCD的对角线的交点G是否在(2)中的抛物线上,并说明理由.
如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段BC交于点N,点P为线段BC上一个动点(与B、C不重合) .求点A、B的坐标;在抛物线的对称轴上找一点D,使|DC-DB|的值最大,求点D的坐标;过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点坐标.